Complex surface modeling using perturbation functions

S. I. Vyatkin1
1Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. I. Vyatkin, B. S. Dolgovesov, A. V. Yesin, et al., “Geometric Modeling and Visualization of Functionally Defined Objects,” Avtometriya, No. 6, 84 (1999) [Optoelectr. Instrum. Data Process., No. 6, 65 (1999)].

V. Adzhiev, A. Pas’ko, and V. Savchenko, “Shape Modeling Using Real Functions,” Otkrytie Sistemy, No. 5, 15 (1996).

G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1980) [in Russian].

E. Poznyak and E. Shishkin, Differential Geometry (MGU, Moscow, 1990) [in Russian].

S. Vyatkin, B. Dolgovesov, A. Yesin, et al., “Voxel Volumes Volume-Oriented Visualization System,” IEEE Comput. Soc., 234 (1999).

S. Vyatkin, B. Dolgovesov, and O. Guimaoutdinov, “Synthesis of Virtual Environment Using Perturbation Functions,” in Proceedings of the World Multiconf. on Systemics, Cybernetics and Informatics (Orlando, FL, USA, 2001) Vol. III, p. 350.

S. I. Vyatkin and B. S. Dolgovesov, “Semitransparent Object Visualization Based on Perturbation and Transparency Functions,” Avtometriya 41(3), 49 (2005) [Optoelectr. Instrum. Data Process. 41 (3), 43 (2005)].

S. I. Vyatkin and B. S. Dolgovesov, “Synthesis of Convolution Surfaces with Object Space Recursive Subdivision,” Avtometriya, No. 4, 58 (2002) [Optoelectr. Instrum. Data Process., No. 4, 48 (2002)].

A. M. Kovalev, “On the Nonlinear Visual Space Model,” Avtometriya 41(5), 58 (2005) [Optoelectr. Instrum. Data Process. 41 (5), 49 (2005)].

A. M. Kovalev, “Visual Space Description in Klein and Poincare Models,” Avtometriya 42(4), 57 (2006) [Optoelectr. Instrum. Data Process. 42 (4), 49 (2006)].