Complex planar curves homeomorphic to a line have at most four singular points
Tài liệu tham khảo
Artal Bartolo, 2006, Superisolated Surface Singularities, Singularities and Computer Algebra, vol. 324, 13
Abhyankar, 1973, Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II, J. Reine Angew. Math., 260, 47
Abhyankar, 1973, J. Reine Angew. Math., 261, 29
Baranowski, 2016, Heegaard-Floer homologies and rational cuspidal curves, Lecture Notes, vol. 3
Borodzik, 2019, Involutive Heegaard-Floer homology and rational cuspidal curves, Proc. Lond. Math. Soc., 118, 441, 10.1112/plms.12179
Borodzik, 2014, Heegaard-Floer homology and rational cuspidal curves, Forum Math. Sigma, 2
Borodzik, 2016, Semigroups, d-invariants and deformations of cuspidal singular points of plane curves, J. Lond. Math. Soc. (2), 93, 439, 10.1112/jlms/jdv068
Bodnár, 2016, Lattice cohomology and rational cuspidal curves, Math. Res. Lett., 23, 339, 10.4310/MRL.2016.v23.n2.a3
Bodnár
Borodzik, 2010, Complex algebraic plane curves via Poincaré-Hopf formula. II. Annuli, Isr. J. Math., 175, 301, 10.1007/s11856-010-0013-1
Cassou-Nogues, 2009, Closed embeddings of C⁎ in C2. I, J. Algebra, 322, 2950, 10.1016/j.jalgebra.2008.11.013
Drucker, 1979, Graphical evaluation of sparse determinants, Proc. Am. Math. Soc., 77, 35, 10.1090/S0002-9939-1979-0539626-2
Dimca, 2017, Free divisors and rational cuspidal plane curves, Math. Res. Lett., 24, 1023, 10.4310/MRL.2017.v24.n4.a5
Dimca, 2018, Free and nearly free curves vs. rational cuspidal plane curves, Publ. Res. Inst. Math. Sci., 54, 163, 10.4171/PRIMS/54-1-6
Dimca, 2018, On the freeness of rational cuspidal plane curves, Mosc. Math. J., 18, 659
Fernández de Bobadilla, 2006, On rational cuspidal projective plane curves, Proc. Lond. Math. Soc., 92, 99, 10.1017/S0024611505015467
Fernández de Bobadilla, 2007, Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair, 31
Fernández de Bobadilla, 2007, On rational cuspidal plane curves, open surfaces and local singularities, 411
Fenske, 1999, Rational 1- and 2-cuspidal plane curves, Beitr. Algebra Geom., 40, 309
Fenske, 1999, Rational cuspidal plane curves of type (d,d−4) with χ(ΘV〈D〉)⩽0, Manuscr. Math., 98, 511, 10.1007/s002290050158
Fujita, 1982, On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29, 503
Flenner, 1996, On a class of rational cuspidal plane curves, Manuscr. Math., 89, 439, 10.1007/BF02567528
Flenner, 2000, Rational cuspidal plane curves of type (d,d−3), Math. Nachr., 210, 93, 10.1002/(SICI)1522-2616(200002)210:1<93::AID-MANA93>3.0.CO;2-4
Vasant Gurjar
Gurjar, 1996, On contractible curves in the complex affine plane, Tohoku Math. J. (2), 48, 459, 10.2748/tmj/1178225344
Kashiwara, 1987, Fonctions rationnelles de type (0,1) sur le plan projectif complexe, Osaka J. Math., 24, 521
Kollár
Kollár, 1998, Birational Geometry of Algebraic Varieties, vol. 134
Koras, 2017, The Coolidge–Nagata conjecture, Duke Math. J., 166, 1, 10.1215/00127094-2017-0010
Koras, 1999, C⁎-actions on C3: the smooth locus of the quotient is not of hyperbolic type, J. Algebraic Geom., 8, 603
Liu, 2014
Luengo, 1987, The μ-constant stratum is not smooth, Invent. Math., 90, 139, 10.1007/BF01389034
Luengo-Velasco, 2005, Links and analytic invariants of superisolated singularities, J. Algebraic Geom., 14, 543, 10.1090/S1056-3911-05-00397-8
Matsuki, 2002, Introduction to the Mori Program, 10.1007/978-1-4757-5602-9
Miyanishi, 2001, Open Algebraic Surfaces, vol. 12
Mohan Kumar, 1982, Curves with negative self-intersection on rational surfaces, J. Math. Kyoto Univ., 22, 767
Matsuoka, 1989, The degree of rational cuspidal curves, Math. Ann., 285, 233, 10.1007/BF01443516
Miyanishi, 1992, Absence of the affine lines on the homology planes of general type, J. Math. Kyoto Univ., 32, 443
Namba, 1984, Geometry of Projective Algebraic Curves
Orevkov, 2002, On rational cuspidal curves, Math. Ann., 324, 657, 10.1007/s002080000191
Palka, 2011, Recent progress in the geometry of Q-acyclic surfaces, vol. 54, 271
Palka, 2014, The Coolidge–Nagata conjecture, part I, Adv. Math., 267, 1, 10.1016/j.aim.2014.07.038
Palka, 2015, A new proof of the theorems of Lin-Zaidenberg and Abhyankar-Moh-Suzuki, J. Algebra Appl., 14
Palka, 2019, Cuspidal curves, minimal models and Zaidenberg's finiteness conjecture, J. Reine Angew. Math., 747, 147, 10.1515/crelle-2016-0021
Piontkowski, 2007, On the number of cusps of rational cuspidal plane curves, Exp. Math., 16, 251, 10.1080/10586458.2007.10128996
Palka, 2017, Classification of planar rational cuspidal curves I. C⁎⁎-fibrations, Proc. Lond. Math. Soc. (3), 115, 638, 10.1112/plms.12049
Palka, 2020, Classification of planar rational cuspidal curves. II. Log del Pezzo models, Proc. Lond. Math. Soc. (3), 120, 642, 10.1112/plms.12300
Russell, 1980, Hamburger-Noether expansions and approximate roots of polynomials, Manuscr. Math., 31, 25, 10.1007/BF01303268
Russell, 2002, Some formal aspects of the theorems of Mumford-Ramanujam, vol. 16, 557
Suzuki, 1974, Propriétés topologiques des polynômes de deux variables, complexes, et automorphismes algébriques de l'espace C2, J. Math. Soc. Jpn., 26, 241, 10.2969/jmsj/02620241
Tono, 2000, Defining equations of certain rational cuspidal curves. I, Manuscr. Math., 103, 47, 10.1007/s002290070028
Tono, 2001, Rational unicuspidal plane curves with κ¯=1, 82
Tono, 2005, On the number of the cusps of cuspidal plane curves, Math. Nachr., 278, 216, 10.1002/mana.200310236
Tono
Wakabayashi, 1978, On the logarithmic Kodaira dimension of the complement of a curve in P2, Proc. Jpn. Acad., Ser. A, Math. Sci., 54, 157, 10.3792/pjaa.54.157
Yoshihara, 1988, Plane curves whose singular points are cusps, Proc. Am. Math. Soc., 103, 737, 10.1090/S0002-9939-1988-0947648-8
Zaidenberg, 1983, An irreducible, simply connected algebraic curve in C2 is equivalent to a quasihomogeneous curve, Dokl. Akad. Nauk SSSR, 271, 1048
Zaidenberg, 1995, On the number of singular points of plane curves, 156
Zaidenberg, 1996, On rigid rational cuspidal plane curves, Usp. Mat. Nauk, 51, 149