Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering
Tài liệu tham khảo
Arnison, 2013, Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature, Nat Prod Rep, 30, 108, 10.1039/C2NP20085F
Süssmuth, 2017, Nonribosomal peptide synthesis-principles and prospects, Angew Chem Int Ed Engl, 56, 3770, 10.1002/anie.201609079
Zasloff, 2002, Antimicrobial peptides of multicellular organisms, Nature, 415, 389, 10.1038/415389a
Fjell, 2011, Designing antimicrobial peptides: form follows function, Nat Rev Drug Discov, 11, 37, 10.1038/nrd3591
Dang, 2017, Bioactive peptide natural products as lead structures for medicinal use, Acc Chem Res, 50, 1566, 10.1021/acs.accounts.7b00159
Puehringer, 2008, The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach, BMC Biochem, 9, 8, 10.1186/1471-2091-9-8
Rokita, 2010, Efficient use and recycling of the micronutrient iodide in mammals, Biochimie, 92, 1227, 10.1016/j.biochi.2010.02.013
Montalbán-López, 2021, New developments in RiPP discovery, enzymology and engineering, Nat Prod Rep, 38, 130, 10.1039/D0NP00027B
Dell, 2021, Ribosome-independent peptide biosynthesis: the challenge of a unifying nomenclature, Nat Prod Rep
Walsh, 2013, Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds, Angew Chem Int Ed Engl, 52, 7098, 10.1002/anie.201208344
Baltz, 2019, Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities, J Ind Microbiol Biotechnol, 46, 281, 10.1007/s10295-018-2115-4
Felnagle, 2008, Nonribosomal peptide synthetases involved in the production of medically relevant natural products, Mol Pharm, 5, 191, 10.1021/mp700137g
Huo, 2017, Insights into the biosynthesis of duramycin, Appl Environ Microbiol, 83, 10.1128/AEM.02698-16
Shin, 2016, Biomedical applications of nisin, J Appl Microbiol, 120, 1449, 10.1111/jam.13033
Dubos, 1939, Studies on a bactericidal agent extracted from a soil Bacillus: III. preparation and activity of a protein-free fraction, J Exp Med, 70, 249, 10.1084/jem.70.3.249
Hotchkiss, 1940, Fractionation of the bactericidal agent from cultures of a soil Bacillus, J Biol Chem, 132, 791, 10.1016/S0021-9258(19)56231-7
Krause, 1988, Organization of the biosynthesis genes for the peptide antibiotic gramicidin S, J Bacteriol, 170, 4669, 10.1128/jb.170.10.4669-4674.1988
Marahiel, 1997, Modular peptide synthetases involved in nonribosomal peptide synthesis, Chem Rev, 97, 2651, 10.1021/cr960029e
Stachelhaus, 1999, The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases, Chem Biol, 6, 493, 10.1016/S1074-5521(99)80082-9
Challis, 2000, Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains, Chem Biol, 7, 211, 10.1016/S1074-5521(00)00091-0
Schnell, 1988, Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings, Nature, 333, 276, 10.1038/333276a0
Freeman, 2012, Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides, Science, 338, 387, 10.1126/science.1226121
Freeman, 2017, Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium, Nat Chem, 9, 387, 10.1038/nchem.2666
Wyche, 2017, A polycyclic peptide from a fungus-derived streptomycete, J Am Chem Soc, 139, 12899, 10.1021/jacs.7b06176
Reisberg, 2020, Total synthesis reveals atypical atropisomerism in a small-molecule natural product, tryptorubin A, Science, 367, 458, 10.1126/science.aay9981
Mootz, 2002, Ways of assembling complex natural products on modular nonribosomal peptide synthetases A, Chembiochem, 3, 490, 10.1002/1439-7633(20020603)3:6<490::AID-CBIC490>3.0.CO;2-N
Marahiel, 2009, Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis, J Pept Sci, 15, 799, 10.1002/psc.1183
Gulick, 2009, Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase, ACS Chem Biol, 4, 811, 10.1021/cb900156h
Zhang, 2013, In vitro characterization of echinomycin biosynthesis: formation and hydroxylation of L-tryptophanyl-S-enzyme and oxidation of (2S,3S) β-hydroxytryptophan, PLoS One, 8
Strieker, 2009, Stereospecific synthesis of threo- and erythro-β-hydroxyglutamic acid during kutzneride biosynthesis, J Am Chem Soc, 131, 13523, 10.1021/ja9054417
Strieker, 2007, Mechanistic and structural basis of stereospecific Cβ-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide, ACS Chem Biol, 2, 187, 10.1021/cb700012y
Heemstra, 2008, Tandem action of the O2- and FADH2-dependent halogenases KtzQ and KtzR produce 6,7-dichlorotryptophan for kutzneride assembly, J Am Chem Soc, 130, 14024, 10.1021/ja806467a
Vaillancourt, 2005, SyrB2 in syringomycin E biosynthesis is a nonheme FeII α-ketoglutarate- and O2-dependent halogenase, Proc Natl Acad Sci U S A, 102, 10111, 10.1073/pnas.0504412102
Singh, 2007, Characterization of SyrC, an aminoacyltransferase shuttling threonyl and chlorothreonyl residues in the syringomycin biosynthetic assembly line, Chem Biol, 14, 31, 10.1016/j.chembiol.2006.11.005
Meyer, 2016, Biochemical dissection of the natural diversification of microcystin provides lessons for synthetic biology of NRPS, Cell Chemical Biology, 23, 462, 10.1016/j.chembiol.2016.03.011
Cai, 2017, Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design, Nat Chem, 9, 379, 10.1038/nchem.2671
Firn, 2003, Natural products--a simple model to explain chemical diversity, Nat Prod Rep, 20, 382, 10.1039/b208815k
Walsh, 2008, The evolution of gene collectives: how natural selection drives chemical innovation, Proc Natl Acad Sci U S A, 105, 4601, 10.1073/pnas.0709132105
Mercer, 2007, The ubiquitous carrier protein--a window to metabolite biosynthesis, Nat Prod Rep, 24, 750, 10.1039/b603921a
Izoré, 2018, The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis, Nat Prod Rep, 35, 1120, 10.1039/C8NP00038G
Bozhüyük, 2019, Engineering enzymatic assembly lines to produce new antibiotics, Curr Opin Microbiol, 51, 88, 10.1016/j.mib.2019.10.007
Rausch, 2007, Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution, BMC Evol Biol, 7, 78, 10.1186/1471-2148-7-78
Dekimpe, 2021, Beyond peptide bond formation: the versatile role of condensation domains in natural product biosynthesis, Nat Prod Rep, 10.1039/D0NP00098A
Keating, 2001, Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis, Chembiochem, 2, 99, 10.1002/1439-7633(20010202)2:2<99::AID-CBIC99>3.0.CO;2-3
Du, 2010, PKS and NRPS release mechanisms, Nat Prod Rep, 27, 255, 10.1039/B912037H
Minowa, 2007, Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes, J Mol Biol, 368, 1500, 10.1016/j.jmb.2007.02.099
Röttig, 2011, NRPSpredictor2--a web server for predicting NRPS adenylation domain specificity, Nucleic Acids Res, 39, W362, 10.1093/nar/gkr323
Medema, 2011, antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences, Nucleic Acids Res, 39, W339, 10.1093/nar/gkr466
Rausch, 2005, Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs), Nucleic Acids Res, 33, 5799, 10.1093/nar/gki885
Blin, 2017, antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification, Nucleic Acids Res, 45, W36, 10.1093/nar/gkx319
Chevrette, 2017, SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria, Bioinformatics, 33, 3202, 10.1093/bioinformatics/btx400
Blin, 2021, antiSMASH 6.0: improving cluster detection and comparison capabilities, Nucleic Acids Res, 49, W29, 10.1093/nar/gkab335
Funk, 2017, Ribosomal natural products, tailored to fit, Acc Chem Res, 50, 1577, 10.1021/acs.accounts.7b00175
Jin, 2003, Structural and functional analysis of pantocin A: an antibiotic from Pantoea agglomerans discovered by heterologous expression of cloned genes, Angew Chem Int Ed Engl, 42, 2898, 10.1002/anie.200351053
Ghodge, 2016, Post-translational Claisen Condensation and Decarboxylation en Route to the Bicyclic Core of Pantocin A, J Am Chem Soc, 138, 5487, 10.1021/jacs.5b13529
Ibba, 2000, Aminoacyl-tRNA synthesis, Annu Rev Biochem, 69, 617, 10.1146/annurev.biochem.69.1.617
Sieber, 2005, Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics, Chem Rev, 105, 715, 10.1021/cr0301191
Rubin, 2020, Recent advances in the biosynthesis of RiPPs from multicore-containing precursor peptides, J Ind Microbiol Biotechnol, 47, 659, 10.1007/s10295-020-02289-1
Martins, 2015, Cyanobactins from cyanobacteria: current genetic and chemical state of knowledge, Mar Drugs, 13, 6910, 10.3390/md13116910
Zhong, 2020, Challenges and advances in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs), Synth Syst Biotechnol, 5, 155, 10.1016/j.synbio.2020.06.002
Scherlach, 2021, Mining and unearthing hidden biosynthetic potential, Nat Commun, 12, 3864, 10.1038/s41467-021-24133-5
Russell, 2020, Genome mining strategies for ribosomally synthesised and post-translationally modified peptides, Comput Struct Biotechnol J, 18, 1838, 10.1016/j.csbj.2020.06.032
Kloosterman, 2020, RRE-finder: a genome-mining tool for class-independent RiPP discovery, mSystems, 5, 10.1128/mSystems.00267-20
Blin, 2013, antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers, Nucleic Acids Res, 41, W204, 10.1093/nar/gkt449
Weber, 2015, antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters, Nucleic Acids Res, 43, W237, 10.1093/nar/gkv437
Blin, 2019, antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline, Nucleic Acids Res, 47, W81, 10.1093/nar/gkz310
Skinnider, 2017, Prism 3: expanded prediction of natural product chemical structures from microbial genomes, Nucleic Acids Res, 45, W49, 10.1093/nar/gkx320
Biermann, 2021, Hidden treasures: microbial natural product biosynthesis off the beaten path, mSystems, 10.1128/mSystems.00846-21
Agrawal, 2017, RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links, Nucleic Acids Res, 45, W80, 10.1093/nar/gkx408
de Los Santos, 2019, NeuRiPP: neural network identification of RiPP precursor peptides, Sci Rep, 9, 13406, 10.1038/s41598-019-49764-z
Merwin, 2020, DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products, Proc Natl Acad Sci U S A, 117, 371, 10.1073/pnas.1901493116
Kloosterman, 2020, Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides, PLoS Biol, 18, 10.1371/journal.pbio.3001026
Prihoda, 2021, The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability, Nat Prod Rep, 38, 1100, 10.1039/D0NP00055H
Balibar, 2005, Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains, Chem Biol, 12, 1189, 10.1016/j.chembiol.2005.08.010
Cheng, 2000, A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis, J Biol Chem, 275, 4906, 10.1074/jbc.275.7.4906
Li, 2008, Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid, Chem Biol, 15, 118, 10.1016/j.chembiol.2007.12.014
Hoffmann, 1994, Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis, J Biol Chem, 269, 12710, 10.1016/S0021-9258(18)99934-5
Samel, 2014, Structure of the epimerization domain of tyrocidine synthetase A, Acta Crystallogr D Biol Crystallogr, 70, 1442, 10.1107/S1399004714004398
Clugston, 2003, Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst, Biochemistry, 42, 12095, 10.1021/bi035090+
Parent, 2016, The B12-radical SAM enzyme PoyC catalyzes valine cβ-methylation during polytheonamide biosynthesis, J Am Chem Soc, 138, 15515, 10.1021/jacs.6b06697
Parent, 2018, Mechanistic investigations of PoyD, a radical S-Adenosyl-l-methionine enzyme catalyzing iterative and directional epimerizations in polytheonamide A biosynthesis, J Am Chem Soc, 140, 2469, 10.1021/jacs.7b08402
Skaugen, 1994, In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide, J Biol Chem, 269, 27183, 10.1016/S0021-9258(18)46966-9
Repka, 2017, Mechanistic understanding of lanthipeptide biosynthetic enzymes, Chem Rev, 117, 5457, 10.1021/acs.chemrev.6b00591
Sikandar, 2020, The bottromycin epimerase BotH defines a group of atypical α/β-hydrolase-fold enzymes, Nat Chem Biol, 16, 1013, 10.1038/s41589-020-0569-y
Duerfahrt, 2004, Rational design of a bimodular model system for the investigation of heterocyclization in nonribosomal peptide biosynthesis, Chem Biol, 11, 261, 10.1016/j.chembiol.2004.01.013
Walsh, 2016, Insights into the chemical logic and enzymatic machinery of NRPS assembly lines, Nat Prod Rep, 33, 127, 10.1039/C5NP00035A
Sundaram, 2016, On-line enzymatic tailoring of polyketides and peptides in thiotemplate systems, Curr Opin Chem Biol, 31, 82, 10.1016/j.cbpa.2016.01.012
Patel, 2001, In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities, Biochemistry, 40, 9023, 10.1021/bi010519n
Labby, 2015, Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis, Nat Prod Rep, 32, 641, 10.1039/C4NP00120F
Helfrich, 2018, Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome, Nat Microbiol, 3, 909, 10.1038/s41564-018-0200-0
Ghilarov, 2019, Architecture of microcin B17 synthetase: an octameric protein complex converting a ribosomally synthesized peptide into a DNA gyrase poison, Mol Cell, 73, 749, 10.1016/j.molcel.2018.11.032
Crone, 2012, Identification and characterisation of the gene cluster for the anti-MRSA antibiotic bottromycin: expanding the biosynthetic diversity of ribosomal peptides, Chem Sci, 3, 3516, 10.1039/c2sc21190d
Schmidt, 2005, Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella, Proc Natl Acad Sci U S A, 102, 7315, 10.1073/pnas.0501424102
Koehnke, 2013, The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction, Angew Chem Int Ed Engl, 52, 13991, 10.1002/anie.201306302
Cox, 2015, The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles, BMC Genom, 16, 778, 10.1186/s12864-015-2008-0
Chatterjee, 2012, Synthesis of N-methylated cyclic peptides, Nat Protoc, 7, 432, 10.1038/nprot.2011.450
Miller, 2001, C-methyltransferase and cyclization domain activity at the intraprotein PK/NRP switch point of yersiniabactin synthetase, J Am Chem Soc, 123, 8434, 10.1021/ja016398w
Liu, 2015, Biosynthesis of the anti-infective marformycins featuring pre-NRPS assembly line N-formylation and O-methylation and post-assembly line C-hydroxylation chemistries, Org Lett, 17, 1509, 10.1021/acs.orglett.5b00389
Hacker, 2018, Structure-based redesign of docking domain interactions modulates the product spectrum of a rhabdopeptide-synthesizing NRPS, Nat Commun, 9, 4366, 10.1038/s41467-018-06712-1
Velkov, 2011, Characterization of the N-methyltransferase activities of the multifunctional polypeptide cyclosporin synthetase, Chem Biol, 18, 464, 10.1016/j.chembiol.2011.01.017
Shi, 2009, Structure and function of the glycopeptide N-methyltransferase MtfA, a tool for the biosynthesis of modified glycopeptide antibiotics, Chem Biol, 16, 401, 10.1016/j.chembiol.2009.02.007
Renevey, 2017, The importance of N-methylations for the stability of the β6·3-helical conformation of polytheonamide B, Eur Biophys J, 46, 363, 10.1007/s00249-016-1179-1
Helf, 2017, Enzyme from an uncultivated sponge bacterium catalyzes S-methylation in a ribosomal peptide, Chembiochem, 18, 444, 10.1002/cbic.201600594
Koehnke, 2012, The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain, Nat Struct Mol Biol, 19, 767, 10.1038/nsmb.2340
Truman, 2016, Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides, Beilstein J Org Chem, 12, 1250, 10.3762/bjoc.12.120
Trauger, 2000, Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase, Nature, 407, 215, 10.1038/35025116
Nguyen, 2006, Combinatorial biosynthesis of novel antibiotics related to daptomycin, Proc Natl Acad Sci U S A, 103, 17462, 10.1073/pnas.0608589103
Hoyer, 2007, The iterative gramicidin s thioesterase catalyzes peptide ligation and cyclization, Chem Biol, 14, 13, 10.1016/j.chembiol.2006.10.011
Wolff, 2018, The benzodiazepine-like natural product tilivalline is produced by the entomopathogenic bacterium Xenorhabdus eapokensis, PLoS One, 13, 10.1371/journal.pone.0194297
Chhabra, 2012, Nonprocessive (2 + 2e-) off-loading reductase domains from mycobacterial nonribosomal peptide synthetases, Proc Natl Acad Sci U S A, 109, 5681, 10.1073/pnas.1118680109
Tietze, 2020, Nonribosomal peptides produced by minimal and engineered synthetases with terminal reductase domains, Chembiochem, 21, 2750, 10.1002/cbic.202000176
Lu, 2021, Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides via C–S and C–C bond formation, Nat Prod Rep, 38, 981, 10.1039/D0NP00044B
Johnston, 2013, Nonribosomal assembly of natural lipocyclocarbamate lipoprotein-associated phospholipase inhibitors, Chembiochem, 14, 431, 10.1002/cbic.201200598
Schimming, 2015, Structure, biosynthesis, and occurrence of bacterial pyrrolizidine alkaloids, Angew Chem Int Ed Engl, 54, 12702, 10.1002/anie.201504877
Himes, 2016, Production of sactipeptides in Escherichia coli: probing the substrate promiscuity of subtilosin A biosynthesis, ACS Chem Biol, 11, 1737, 10.1021/acschembio.6b00042
Kudo, 2014, Biosynthesis of natural products containing β-amino acids, Nat Prod Rep, 31, 1056, 10.1039/C4NP00007B
Rachid, 2006, Molecular and biochemical studies of chondramide formation-highly cytotoxic natural products from Chondromyces crocatus Cm c5, Chem Biol, 13, 667, 10.1016/j.chembiol.2006.06.002
Thomas, 2003, Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster, Antimicrob Agents Chemother, 47, 2823, 10.1128/AAC.47.9.2823-2830.2003
Magarvey, 2006, Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts, ACS Chem Biol, 1, 766, 10.1021/cb6004307
Morinaka, 2018, Natural noncanonical protein splicing yields products with diverse β-amino acid residues, Science, 359, 779, 10.1126/science.aao0157
Acedo, 2019, O-Methyltransferase-Mediated incorporation of a β-amino acid in lanthipeptides, J Am Chem Soc, 141, 16790, 10.1021/jacs.9b07396
Bischoff, 2001, The biosynthesis of vancomycin-type glycopeptide antibiotics-the order of the cyclization steps, Angew Chem Int Ed, 40, 4688, 10.1002/1521-3773(20011217)40:24<4688::AID-ANIE4688>3.0.CO;2-M
Williams, 1977, Structural and mode of action studies on the antibiotic vancomycin. Evidence from 270-MHz proton magnetic resonance, J Am Chem Soc, 99, 2768, 10.1021/ja00450a058
Loll, 2000, The structural biology of molecular recognition by vancomycin, Annu Rev Biophys Biomol Struct, 29, 265, 10.1146/annurev.biophys.29.1.265
Haslinger, 2015, X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis, Nature, 521, 105, 10.1038/nature14141
Stegmann, 2006, Genetic analysis of the balhimycin (vancomycin-type) oxygenase genes, J Biotechnol, 124, 640, 10.1016/j.jbiotec.2006.04.009
Benjdia, 2017, Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), Front Chem, 5, 87, 10.3389/fchem.2017.00087
Imai, 2019, A new antibiotic selectively kills Gram-negative pathogens, Nature, 576, 459, 10.1038/s41586-019-1791-1
Hug, 2020, Biosynthesis of cittilins, unusual ribosomally synthesized and post-translationally modified peptides from myxococcus xanthus, ACS Chem Biol, 15, 2221, 10.1021/acschembio.0c00430
Zdouc, 2021, A biaryl-linked tripeptide from Planomonospora reveals a widespread class of minimal RiPP gene clusters, Cell Chem Biol, 28, 733, 10.1016/j.chembiol.2020.11.009
Zhang, 2012, Converting peptides into drug leads by lipidation, Curr Med Chem, 19, 1602, 10.2174/092986712799945003
Kraas, 2010, Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation, Chem Biol, 17, 872, 10.1016/j.chembiol.2010.06.015
Schultz, 2008, Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin, J Am Chem Soc, 130, 4507, 10.1021/ja711188x
Wohlgemuth, 2017, Two prenyltransferases govern a consecutive prenylation cascade in the biosynthesis of echinulin and neoechinulin, Org Lett, 19, 5928, 10.1021/acs.orglett.7b02926
Ding, 2010, Genome-based characterization of two prenylation steps in the assembly of the stephacidin and notoamide anticancer agents in a marine-derived Aspergillus sp, J Am Chem Soc, 132, 12733, 10.1021/ja1049302
Mundt, 2012, Identification of the verruculogen prenyltransferase FtmPT3 by a combination of chemical, bioinformatic and biochemical approaches, Chembiochem, 13, 2583, 10.1002/cbic.201200523
Hubrich, 2022, Ribosomally derived lipopeptides containing distinct fatty acyl moieties, Proc Natl Acad Sci U S A, 119, 10.1073/pnas.2113120119
Wiebach, 2018, The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides, Nat Chem Biol, 14, 652, 10.1038/s41589-018-0068-6
Wiebach, 2020, An amphipathic alpha-helix guides maturation of the ribosomally-synthesized lipolanthines, Angew Chem Int Ed Engl, 59, 16777, 10.1002/anie.202003804
Ozaki, 2017, Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo, Nat Commun, 8, 14207, 10.1038/ncomms14207
Zong, 2018, Albusnodin: an acetylated lasso peptide from Streptomyces albus, Chem Commun, 54, 1339, 10.1039/C7CC08620B
Unno, 2020, Heterologous expression of a cryptic gene cluster from Grimontia marina affords a novel tricyclic peptide grimoviridin, Appl Microbiol Biotechnol, 104, 5293, 10.1007/s00253-020-10605-z
McIntosh, 2011, Enzymatic basis of ribosomal peptide prenylation in cyanobacteria, J Am Chem Soc, 133, 13698, 10.1021/ja205458h
McIntosh, 2013, Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements, ACS Chem Biol, 8, 877, 10.1021/cb300614c
Okada, 2005, Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX, Nat Chem Biol, 1, 23, 10.1038/nchembio709
Hirooka, 2020, Identification of critical residues for the catalytic activity of ComQ, a Bacillus prenylation enzyme for quorum sensing, by using a simple bioassay system, Biosci Biotechnol Biochem, 84, 347, 10.1080/09168451.2019.1685371
Vaillancourt, 2006, Nature's inventory of halogenation catalysts: oxidative strategies predominate, Chem Rev, 106, 3364, 10.1021/cr050313i
Gribble, 2004, Natural organohalogens: a new frontier for medicinal agents?, J Chem Educ, 81, 1441, 10.1021/ed081p1441
Schmartz, 2014, Bis-chlorination of a hexapeptide-PCP conjugate by the halogenase involved in vancomycin biosynthesis, Org Biomol Chem, 12, 5574, 10.1039/C4OB00474D
Ortega, 2017, Two flavoenzymes catalyze the post-translational generation of 5-chlorotryptophan and 2-aminovinyl-cysteine during NAI-107 biosynthesis, ACS Chem Biol, 12, 548, 10.1021/acschembio.6b01031
Nguyen, 2021, An obligate peptidyl brominase underlies the discovery of highly distributed biosynthetic gene clusters in marine sponge microbiomes, J Am Chem Soc, 143, 10221, 10.1021/jacs.1c03474
Van Bambeke, 2004, Glycopeptide antibiotics, Drugs, 64, 913, 10.2165/00003495-200464090-00001
Howard-Jones, 2007, Kinetic analysis of teicoplanin glycosyltransferases and acyltransferase reveal ordered tailoring of aglycone scaffold to reconstitute mature teicoplanin, J Am Chem Soc, 129, 10082, 10.1021/ja0735857
Norris, 2016, The glycocins: in a class of their own, Curr Opin Struct Biol, 40, 112, 10.1016/j.sbi.2016.09.003
Wang, 2014, The glycosyltransferase involved in thurandacin biosynthesis catalyzes both O- and S-glycosylation, J Am Chem Soc, 136, 84, 10.1021/ja411159k
Garcia De Gonzalo, 2014, NMR structure of the S-linked glycopeptide sublancin 168, ACS Chem Biol, 9, 796, 10.1021/cb4008106
Bagley, 2005, Thiopeptide antibiotics, Chem Rev, 105, 685, 10.1021/cr0300441
Ortiz-López, 2020, Cacaoidin, first member of the new lanthidin RiPP family, Angew Chem Int Ed Engl, 59, 12654, 10.1002/anie.202005187
Zyubko, 2019, Efficient in vivo synthesis of lasso peptide pseudomycoidin proceeds in the absence of both the leader and the leader peptidase, Chem Sci, 10, 9699, 10.1039/C9SC02370D
Tocchetti, 2013, Capturing linear intermediates and C-terminal variants during maturation of the thiopeptide GE2270, Chem Biol, 20, 1067, 10.1016/j.chembiol.2013.07.005
Zheng, 2016, Precursor-directed mutational biosynthesis facilitates the functional assignment of two cytochromes P450 in thiostrepton biosynthesis, ACS Chem Biol, 11, 2673, 10.1021/acschembio.6b00419
Ohlendorf, 2011, Szentiamide, an N -formylated cyclic depsipeptide from xenorhabdus szentirmaii DSM 16338 T, Nat Prod Commun, 6
Bozhüyük, 2018, De novo design and engineering of non-ribosomal peptide synthetases, Nat Chem, 10, 275, 10.1038/nchem.2890
Schoenafinger, 2006, Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin, J Am Chem Soc, 128, 7406, 10.1021/ja0611240
Nayak, 2017, Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea, Elife, 6, 10.7554/eLife.29218
Bösch, 2020, Landornamides: antiviral ornithine‐containing ribosomal peptides discovered through genome mining, Angew Chem Weinheim Bergstr Ger, 132, 11861, 10.1002/ange.201916321
Pfeifer, 2001, A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine, J Biol Chem, 276, 38370, 10.1074/jbc.M106580200
Wu, 2012, Chain elongation and cyclization in type III PKS DpgA, Chembiochem, 13, 862, 10.1002/cbic.201200051
Offenzeller, 1996, Biosynthesis of the unusual amino acid (4R)-4-(E)-2-butenyl-4-methyl-L-threonine of cyclosporin A: enzymatic analysis of the reaction sequence including identification of the methylation precursor in a polyketide pathway, Biochemistry, 35, 8401, 10.1021/bi960224n
Mahlert, 2007, Stereospecific enzymatic transformation of α-ketoglutarate to (2S,3R)-3-methyl glutamate during acidic lipopeptide biosynthesis, J Am Chem Soc, 129, 12011, 10.1021/ja074427i
Boettger, 2013, Molecular diversity sculpted by fungal PKS-NRPS hybrids, Chembiochem, 14, 28, 10.1002/cbic.201200624
Miyanaga, 2018, Protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrid assembly lines, Nat Prod Rep, 35, 1185, 10.1039/C8NP00022K
Zhao, 2021, Activation, structure, biosynthesis and bioactivity of glidobactin-like proteasome inhibitors from Photorhabdus laumondii, Chembiochem, 22, 1582, 10.1002/cbic.202100014
Sims, 2005, Equisetin biosynthesis in Fusarium heterosporum, Chem Commun, 186–8
Rees, 2007, Synthesis of [1,2-13C2, 15N]-L-homoserine and its incorporation by the PKS-NRPS system of Fusarium moniliforme into the mycotoxin fusarin C, Chembiochem, 8, 46, 10.1002/cbic.200600404
Rischer, 2018, Biosynthesis, synthesis, and activities of barnesin A, a NRPS-PKS hybrid produced by an anaerobic Epsilonproteobacterium, ACS Chem Biol, 13, 10.1021/acschembio.8b00445
Dashti, 2020, Discovery and biosynthesis of bolagladins: unusual lipodepsipeptides from burkholderia gladioli clinical isolates*, Angew Chem Int Ed Engl, 59, 21553, 10.1002/anie.202009110
Liu, 2004, Hybrid nonribosomal peptide-polyketide interfaces in epothilone biosynthesis: minimal requirements at N and C termini of EpoB for elongation, Chem Biol, 11, 1533, 10.1016/j.chembiol.2004.08.017
Wenski, 2020, Fabclavine diversity in Xenorhabdus bacteria, Beilstein J Org Chem, 16, 956, 10.3762/bjoc.16.84
Masschelein, 2015, A combination of polyunsaturated fatty acid, nonribosomal peptide and polyketide biosynthetic machinery is used to assemble the zeamine antibiotics, Chem Sci, 6, 923, 10.1039/C4SC01927J
Mevers, 2019, Pyonitrins A-D: chimeric natural products produced by Pseudomonas protegens, J Am Chem Soc, 141, 17098, 10.1021/jacs.9b09739
Kozakai, 2020, Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides, Nat Chem, 12, 869, 10.1038/s41557-020-0508-2
Stachelhaus, 1995, Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains, Science, 269, 69, 10.1126/science.7604280
Eppelmann, 2002, Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics, Biochemistry, 41, 9718, 10.1021/bi0259406
Thirlway, 2012, Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity, Angew Chem Int Ed Engl, 51, 7181, 10.1002/anie.201202043
Kries, 2014, Reprogramming nonribosomal peptide synthetases for ‘clickable’ amino acids, Angew Chem Int Ed Engl, 53, 10105, 10.1002/anie.201405281
Villiers, 2011, Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis, Chem Biol, 18, 1290, 10.1016/j.chembiol.2011.06.014
Beck, 2020, Recent advances in Re-engineering modular PKS and NRPS assembly lines, Biotechnol Bioproc Eng, 25, 886, 10.1007/s12257-020-0265-5
Zhang, 2017, Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides, Angew Chem Int Ed Engl, 56, 1740, 10.1002/anie.201611371
Vander Wood, 2018, The modules of trans-acyltransferase assembly lines redefined with a central acyl carrier protein, Proteins, 86, 664, 10.1002/prot.25493
Keatinge-Clay, 2017, Polyketide synthase modules redefined, Angew Chem Int Ed Engl, 56, 4658, 10.1002/anie.201701281
Helfrich, 2021, Evolution of combinatorial diversity in trans-acyltransferase polyketide synthase assembly lines across bacteria, Nat Commun, 12, 1422, 10.1038/s41467-021-21163-x
Bozhüyük, 2019, Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains, Nat Chem, 11, 653, 10.1038/s41557-019-0276-z
Calcott, 2014, Genetic manipulation of non-ribosomal peptide synthetases to generate novel bioactive peptide products, Biotechnol Lett, 36, 2407, 10.1007/s10529-014-1642-y
Baltz, 2014, Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways, ACS Synth Biol, 3, 748, 10.1021/sb3000673
Calcott, 2020, Efficient rational modification of non-ribosomal peptides by adenylation domain substitution, Nat Commun, 11, 4554, 10.1038/s41467-020-18365-0
Izoré, 2021, Structures of a non-ribosomal peptide synthetase condensation domain suggest the basis of substrate selectivity, Nat Commun, 12, 2511, 10.1038/s41467-021-22623-0
Kranz, 2021, Influence of condensation domains on activity and specificity of adenylation domains, bioRxiv
Booth
Baunach, 2021, The landscape of recombination events that create nonribosomal peptide diversity, Mol Biol Evol, 38, 2116, 10.1093/molbev/msab015
Crüsemann, 2013, Evolution-guided engineering of nonribosomal peptide synthetase adenylation domains, Chem Sci, 4, 1041, 10.1039/C2SC21722H
Kries, 2015, A subdomain swap strategy for reengineering nonribosomal peptides, Chem Biol, 22, 640, 10.1016/j.chembiol.2015.04.015
Hahn, 2004, Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains, Proc Natl Acad Sci U S A, 101, 15585, 10.1073/pnas.0404932101
Kegler, 2020, Artificial splitting of a non--ribosomal peptide synthetase by inserting natural docking domains, Angew Chem Int Ed Engl, 132, 13565, 10.1002/ange.201915989
Bozhueyuek, 2021, Synthetic zippers as an enabling tool for engineering of non-ribosomal peptide synthetases, Angew Chem Int Ed Engl, 60, 17531, 10.1002/anie.202102859
Abbood
Huang, 2021, Engineering DNA-templated nonribosomal peptide synthesis, Cell Chemical Biology, 28, 221, 10.1016/j.chembiol.2020.11.004
Ruijne, 2021, Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials, Biochem Soc Trans, 49, 203, 10.1042/BST20200425
Liu, 1992, Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis, J Biol Chem, 267, 25078, 10.1016/S0021-9258(19)74008-3
Cotter, 2006, Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design, Mol Microbiol, 62, 735, 10.1111/j.1365-2958.2006.05398.x
Li, 2010, Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria, Proc Natl Acad Sci U S A, 107, 10430, 10.1073/pnas.0913677107
Pan, 2011, Sequence diversity in the lasso peptide framework: discovery of functional microcin J25 variants with multiple amino acid substitutions, J Am Chem Soc, 133, 5016, 10.1021/ja1109634
Yang, 2018, A lanthipeptide library used to identify a protein-protein interaction inhibitor, Nat Chem Biol, 14, 375, 10.1038/s41589-018-0008-5
Zhao, 2020, High-throughput screening for substrate specificity-adapted mutants of the nisin dehydratase NisB, ACS Synth Biol, 9, 1468, 10.1021/acssynbio.0c00130
Reyna-González, 2016, Leader peptide‐free in vitro reconstitution of microviridin biosynthesis enables design of synthetic protease‐targeted libraries, Angew Chem Int Ed Engl, 128, 9544, 10.1002/ange.201604345
Sardar, 2015, Modularity of RiPP enzymes enables designed synthesis of decorated peptides, Chem Biol, 22, 907, 10.1016/j.chembiol.2015.06.014
Majchrzykiewicz, 2010, Production of a class II two-component lantibiotic of Streptococcus pneumoniae using the class I nisin synthetic machinery and leader sequence, Antimicrob Agents Chemother, 54, 1498, 10.1128/AAC.00883-09
Oman, 2010, Follow the leader: the use of leader peptides to guide natural product biosynthesis, Nat Chem Biol, 6, 9, 10.1038/nchembio.286
Burkhart, 2017, Chimeric leader peptides for the generation of non-natural hybrid RiPP products, ACS Cent Sci, 3, 629, 10.1021/acscentsci.7b00141
Franz, 2021, Leader peptide exchange to produce hybrid, new-to-nature ribosomal natural products, Chem Commun, 57, 6372, 10.1039/D0CC06889F
Selvaraj, 2015, Mechanistic insights of SrtA–LPXTG blockers targeting the transpeptidase mechanism in Streptococcus mutans, RSC Adv, 5, 100498, 10.1039/C5RA12869B
Zhao, 2020, Mimicry of a non-ribosomally produced antimicrobial, brevicidine, by ribosomal synthesis and post-translational modification, Cell Chem Biol, 27, 1262, 10.1016/j.chembiol.2020.07.005