Complex dynamic behaviors of a discrete-time predator–prey system

Chaos, Solitons & Fractals - Tập 32 Số 1 - Trang 80-94 - 2007
Xiaoli Liu1, Dongmei Xiao1
1Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Verhulst, 1838, Notice sur la loi que la population suit dans son accroissement, Corr Math Phys, 10, 113

Pearl, 1920, On the rate of growth of the population of the United States since 1790 and its mathematical representation, Proc Natl Acad Sci, 6, 275, 10.1073/pnas.6.6.275

Brauer, 2001

Freedman, 1980

Murray, 1993

Li, 1975, Period three implies chaos, Amer Math Monthly, 82, 985, 10.2307/2318254

Strogatz, 1994

Saha, 1995, The birth of period 3, Math Mag, 68, 42, 10.2307/2691376

May, 1974, Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science, 186, 645, 10.1126/science.186.4164.645

May, 1976, Simple mathematical models with very complicated dynamics, Nature, 261, 459, 10.1038/261459a0

Summers, 2000, Chaos in periodically forced discrete-time ecosystem models, Chaos, Solitons & Fractals, 11, 2331, 10.1016/S0960-0779(99)00154-X

Gao, 2004, Chaos and bifurcation in the space-clamped FitzHugh–Nagumo system, Chaos, Solitons & Fractals, 21, 943, 10.1016/j.chaos.2003.12.033

Jing, 2002, Chaos behavior in the discrete BVP oscillator, Int J Bifurcat & Chaos, 12, 619, 10.1142/S0218127402004577

Jing, 2004, Bifurcation and chaos in discrete FitzHugh–Nagumo system, Chaos, Solitons & Fractals, 21, 701, 10.1016/j.chaos.2003.12.043

Rosenzweig, 1963, Graphical representation and stability conditions of predator–prey interactions, Amer Naturalist, 97, 209, 10.1086/282272

Beddington, 1975, Dynamic complexity in predator–prey models framed in difference equations, Nature, 255, 58, 10.1038/255058a0

Lopez-Ruiz, 2005, Indirect Allee effect, bistability and chaotic oscillations in a predator–prey discrete model of logistic type, Chaos, Solitons & Fractals, 24, 85, 10.1016/j.chaos.2004.07.018

Xiao, 2002, Dynamic complexities in predator–prey ecosystem models with age-structure for predator, Chaos, Solitons & Fractals, 14, 1403, 10.1016/S0960-0779(02)00061-9

Fan, 2002, Periodic solutions of a discrete time non-autonomous ratio-dependent predator–prey system, Math Comput Model, 35, 951, 10.1016/S0895-7177(02)00062-6

Wang, 1999, Global stability of discrete models of Lotka–Volterra type, Nonlinear Anal, 35, 1019, 10.1016/S0362-546X(98)00112-6

Huo, 2004, Stable periodic solution of the discrete periodic Leslie–Gower predator–prey model, Math Comput Model, 40, 261, 10.1016/j.mcm.2004.02.026

Robinson, 1999

Guckenheimer, 1983