Complex causes and consequences of rangeland greening in South America – multiple interacting natural and anthropogenic drivers and simultaneous ecosystem degradation and recovery trends

Geography and Sustainability - Tập 1 - Trang 304-316 - 2020
Wang Li1,2,3, Robert Buitenwerf1,2, Renata Nicora Chequín4, Javier Elias Florentín4, Roberto Manuel Salas4, Julia Carolina Mata1,2, Li Wang3, Zheng Niu3,5, Jens-Christian Svenning1,2
1Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, Aarhus C 8000, Denmark
2Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus C 8000, Denmark
3State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
4Instituto de Botánica del Nordeste (CONICET-UNNE), Sargento Cabral 2131, c.c. 209, C.P. 3400, Argentina
5University of Chinese Academy of Sciences, Beijing, 100049, China

Tài liệu tham khảo

Abatzoglou, 2018, TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Sci. Data, 5, 10.1038/sdata.2017.191 Abreu, 2017, The biodiversity cost of carbon sequestration in tropical savanna, Sci. Adv., 3, 10.1126/sciadv.1701284 Anadón, 2014, Effect of woody-plant encroachment on livestock production in North and South America, P. Natl. Acad. Sci. USA, 111, 12948, 10.1073/pnas.1320585111 Archer, 2017, Woody plant encroachment: Causes and consequences, 25 Bauni, 2015, Ecosystem loss assessment following hydroelectric dam flooding: The case of Yacyretá, Argentina, Remote Sensing Applications: Society and Environment, 1, 50, 10.1016/j.rsase.2015.06.003 Beckage, 2019, Water limitation, fire, and savanna persistence: A conceptual model, 643 Bernardi, 2016, Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock, Forest Ecol. Manag., 363, 212, 10.1016/j.foreco.2015.12.032 Bhola, 2012, The distribution of large herbivore hotspots in relation to environmental and anthropogenic correlates in the Mara region of Kenya, J. Anim. Ecol., 81, 1268, 10.1111/j.1365-2656.2012.02000.x Blanco, 2003, La inundación silenciosa. El aumento de las aguas en los Esteros del Ibera: La nueva amenaza de la represa Yacyreta. Version ampliada y actualizada. Fundacion Vida Silvestre Argentina, Buenos Aires, 56 Bond, 2000, A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas, Global Change Biol., 6, 865, 10.1046/j.1365-2486.2000.00365.x Bond, 2010, Beyond the forest edge: Ecology, diversity and conservation of the grassy biomes, Biol. Conserv., 143, 2395, 10.1016/j.biocon.2009.12.012 Bond, 2019, The trouble with trees: Afforestation plans for Africa, Trends Ecol. Evol., 34, 963, 10.1016/j.tree.2019.08.003 Brandt, 2017, Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa, Nat. Ecol. Evol., 1, 0081, 10.1038/s41559-017-0081 Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendbazar, N., Herold, M., Fritz, S., 2019. Copernicus Global Land Service: Land Cover 100m: Epoch 2015: Globe. Version V2. 0.2. Buitenwerf, 2012, Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver, Global Change Biol., 18, 675, 10.1111/j.1365-2486.2011.02561.x Buitenwerf, 2018, Land-surface greening suggests vigorous woody regrowth throughout European semi-natural vegetation, Global Change Biol., 24, 5789, 10.1111/gcb.14451 Cabral, 2003, Shrub encroachment in Argentinean savannas, J. Veg. Sci., 14, 145, 10.1111/j.1654-1103.2003.tb02139.x Canziani, 2006, The influence of climate and dam construction on the Ibera wetlands, Argentina. Reg. Environ. Change, 6, 181, 10.1007/s10113-006-0018-9 Chen, 2019, China and India lead in greening of the world through land-use management, Nature Sustain., 2, 122, 10.1038/s41893-019-0220-7 Conradi, 2018, Woody encroachment in African savannas: Towards attribution to multiple drivers and a mechanistic model, J. Biogeogr., 45, 1231, 10.1111/jbi.13238 Daskin, 2016, Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines, J. Ecol., 104, 79, 10.1111/1365-2745.12483 de Jong, 2011, Analysis of monotonic greening and browning trends from global NDVI time-series, Remote Sens. Environ., 115, 692, 10.1016/j.rse.2010.10.011 Devine, 2017, Determinants of woody encroachment and cover in African savannas, Oecologia, 183, 939, 10.1007/s00442-017-3807-6 Durigan, 2016, The need for a consistent fire policy for Cerrado conservation, J. Appl. Ecol., 53, 11, 10.1111/1365-2664.12559 Eddy, 2017, Integrating remote sensing and local ecological knowledge to monitor rangeland dynamics, Ecol. Indic., 82, 106, 10.1016/j.ecolind.2017.06.033 Fagan, 2020, A lesson unlearned? Underestimating tree cover in dryland biases global restoration maps, Global Change Biol., 26, 4679, 10.1111/gcb.15187 Feng, 2016, Revegetation in China’s Loess Plateau is approaching sustainable water resource limits, Nat. Cl. Change, 6, 1019, 10.1038/nclimate3092 Fernandes, 2016, Afforestation of savannas: An impending ecological disaster, Natureza & Conservacao, 14, 146, 10.1016/j.ncon.2016.08.002 Forkel, 2016, Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems, Science, 351, 696, 10.1126/science.aac4971 Fuhlendorf, 2001, Restoring heterogeneity on rangelands: Ecosystem management based on evolutionary grazing patterns, BioScience, 51, 625, 10.1641/0006-3568(2001)051[0625:RHOREM]2.0.CO;2 Fuhlendorf, 1999, Scaling effects of grazing in a semi-arid grassland, J. Veg. Sci., 10, 731, 10.2307/3237088 Funk, 2014, A quasi-global precipitation time series for drought monitoring, US Geological Survey García Criado, 2020, Woody plant encroachment intensifies under climate change across tundra and savanna biomes, Global Ecol. Biogeogr., 29, 925, 10.1111/geb.13072 Giglio, 2009, An active-fire based burned area mapping algorithm for the MODIS sensor, Remote Sens. Environ., 113, 408, 10.1016/j.rse.2008.10.006 Godde, 2018, Grazing systems expansion and intensification: Drivers, dynamics, and trade-offs, Glob. Food Secur., 16, 93, 10.1016/j.gfs.2017.11.003 González-Roglich, 2015, Woody plant-cover dynamics in argentine savannas from the 1880s to 2000s: The interplay of encroachment and agriculture conversion at varying scales, Ecosystems, 18, 481, 10.1007/s10021-015-9841-5 Guido, 2017, Effect of shrub encroachment on vegetation communities in Brazilian forest-grassland mosaics, Perspect. Ecol. Conser., 15, 52 Hegerl, 2010, Good practice guidance paper on detection and attribution related to anthropogenic climate change Hoegh-Guldberg, 2018 Holechek, 1998, Grazing intensity: Critique and approach, Rangelands, 20, 15 Holgerson, 2016, Large contribution to inland water CO2 and CH4emissions from very small ponds, Nature Geosci., 9, 222, 10.1038/ngeo2654 Holl, 2020, Tree planting is not a simple solution, Science, 368, 580, 10.1126/science.aba8232 Kissling, 2008, Spatial autocorrelation and the selection of simultaneous autoregressive models, Global Ecol. Biogeogr., 17, 59, 10.1111/j.1466-8238.2007.00334.x Kulmatiski, 2013, Woody plant encroachment facilitated by increased precipitation intensity, Nat. Clim. Change, 3, 833, 10.1038/nclimate1904 Kunst, 2011, Ecología y uso del fuego en la región chaqueña Argentina, Boletín Informativo CIDEU, 81 Li, 2020, Accelerating savanna degradation threatens the Maasai Mara socio-ecological system, Global Environ. Chang., 60, 10.1016/j.gloenvcha.2019.102030 Li, 2020, Deep-learning based high-resolution mapping shows woody vegetation densification in greater Maasai Mara ecosystem, Remote Sens. Environ., 247, 10.1016/j.rse.2020.111953 Lunt, 2010, How widespread is woody plant encroachment in temperate Australia? Changes in woody vegetation cover in lowland woodland and coastal ecosystems in Victoria from 1989 to 2005, J. Biogeogr., 37, 722, 10.1111/j.1365-2699.2009.02255.x Macias-Fauria, 2012, Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems, Nat. Clim. Change, 2, 613, 10.1038/nclimate1558 Macias, 2014, Grazing and neighborhood interactions limit woody encroachment in wet subtropical savannas, Basic Appl. Ecol., 15, 661, 10.1016/j.baae.2014.09.008 Malhi, 2008, Climate change, deforestation, and the fate of the Amazon, Science, 319, 169, 10.1126/science.1146961 Mann, 1945, Nonparametric tests against trend, Econometrica, 13, 245, 10.2307/1907187 McCollum, 1999, Stocker cattle response to grazing management in tallgrass prairie, J. Range. Manag., 52, 120, 10.2307/4003504 Mishra, 2017, Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers, Sci. Total Environ., 587, 326, 10.1016/j.scitotenv.2017.02.156 Montroull, 2013, Assessment of climate change on the future water levels of the Iberá wetlands, Argentina, during the twenty-first century, Int. J. River Basin Manage., 11, 401, 10.1080/15715124.2013.819807 Myers-Smith, 2020, Complexity revealed in the greening of the Arctic, Nat. Clim. Change, 10, 106, 10.1038/s41558-019-0688-1 Neiff, 2006, Situación ambiental en la ecorregión Iberá, La situación ambiental Argentina, 2005, 177 O’Connor, 2014, Bush encroachment in southern Africa: Changes and causes, Afr. J. Range. For. Sci., 31, 67, 10.2989/10220119.2014.939996 Patten, 1995, Patterns of species and community distributions related to environmental gradients in an arid tropical ecosystem, Vegetatio, 117, 69, 10.1007/BF00033260 Pearson, 2013, Shifts in Arctic vegetation and associated feedbacks under climate change, Nat. Clim. Change, 3, 673, 10.1038/nclimate1858 Pekel, 2016, High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418, 10.1038/nature20584 Piao, 2020, Characteristics, drivers and feedbacks of global greening, Nat. Rev. Earth Environ., 1, 14, 10.1038/s43017-019-0001-x Piao, 2015, Detection and attribution of vegetation greening trend in China over the last 30 years, Global Change Biol., 21, 1601, 10.1111/gcb.12795 Putuhena, 2000, Some hydrological effects of changing forest cover from eucalypts to Pinus radiata, Agr. Forest Meteorol., 100, 59, 10.1016/S0168-1923(99)00086-6 Rangel, 2010, SAM: A comprehensive application for spatial analysis in macroecology, Ecography, 33, 46, 10.1111/j.1600-0587.2009.06299.x Sandel, 2013, Human impacts drive a global topographic signature in tree cover, Nat. Commun., 4, 10.1038/ncomms3474 Sloat, 2018, Increasing importance of precipitation variability on global livestock grazing lands, Nat. Clim. Change, 8, 214, 10.1038/s41558-018-0081-5 Soares-Filho, 2009, Modeling environmental dynamics with Dinamica EGO, 115 Stevens, 2016, Woody encroachment over 70 years in South African savannahs: Overgrazing, global change or extinction aftershock?, Philos. T. R. Soc. B, 371, 10.1098/rstb.2015.0437 Stevens, 2016, Savanna woody encroachment is widespread across three continents, Global Change Biol., 23, 235, 10.1111/gcb.13409 Stow, 2004, Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems, Remote Sens. Environ., 89, 281, 10.1016/j.rse.2003.10.018 Tsegaye, 2010, Land-use/cover dynamics in Northern Afar rangelands, Ethiopia, Agr. Ecos. Environ., 139, 174, 10.1016/j.agee.2010.07.017 Vörösmarty, 2000, Global water resources: vulnerability from cimate change and population growth, Science, 289, 284, 10.1126/science.289.5477.284 Veldman, 2015, Tyranny of trees in grassy biomes, Science, 347, 484, 10.1126/science.347.6221.484-c Venter, 2018, Drivers of woody plant encroachment over Africa, Nat. Commun., 9, 2272, 10.1038/s41467-018-04616-8 Vickers, 2016, Changes in greening in the high Arctic: Insights from a 30 year AVHRR max NDVI datasIet for Svalbard, Environ. Res. Lett., 11, 10.1088/1748-9326/11/10/105004 Walker, 2004, Resilience, Adaptability and Transformability in Social-ecological Systems, Ecol. Soc., 9, 10.5751/ES-00650-090205 Wang, 2020, Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series, Front. Earth Sci., 8, 14, 10.3389/feart.2020.00014 Wei, 2020, Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation, Global Change Biol., 26, 4495, 10.1111/gcb.15190 Wu, 2015, Time-lag effects of global vegetation responses to climate change, Global Change Biol., 21, 3520, 10.1111/gcb.12945 Zamboni, 2017, A review of a multispecies reintroduction to restore a large ecosystem: The Iberá Rewilding Program (Argentina), Perspect. Ecol. Conser., 15, 248 Zeng, 2020, Large-scale afforestation significantly increases permanent surface water in China’s vegetation restoration regions, Agr. Forest Meteorol., 290, 10.1016/j.agrformet.2020.108001 Zhang, 2019, Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas, Nat. Commun., 10, 671, 10.1038/s41467-019-08602-6 Zhu, 2016, Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791, 10.1038/nclimate3004