Complex brain networks: graph theoretical analysis of structural and functional systems

Nature Reviews Neuroscience - Tập 10 Số 3 - Trang 186-198 - 2009
Edward T. Bullmore1, Olaf Sporns2
1Department of Psychiatry, University of Cambridge, Behavioural & Clinical Neurosciences Institute, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
2Department of Psychological and Brain Sciences, Indiana University, Bloomington, 47405, Indiana, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cajal, S. R. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, New York, 1995).

Swanson, L. W. Brain Architecture (Oxford Univ. Press, Oxford, 2003).

Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).

Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

Bressler, S. L. Large-scale cortical networks and cognition. Brain Res. Brain Res. Rev. 20, 288–304 (1995).

Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

McIntosh, A. R. Towards a network theory of cognition. Neural Netw. 13, 861–870 (2000).

Friston, K. Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci. 25, 221–250 (2002).

Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, New York, 2006).

Strogatz, S. H. Exploring complex networks. Nature 410, 268–277 (2001).

Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002). A scholarly review of the early literature on the physics of complex networks, with an emphasis on various types of scale-free and small-world connectivity.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

Börner, K., Sanyal, S. & Vespignani, A. Network science. Annu. Rev. Inform. Sci. Technol. 41, 537–607 (2007).

Tononi, G., Sporns, O. & Edelman, G. M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl Acad. Sci. USA 91, 5033–5037 (1994).

Amaral, L. A. N., Scala, A., Barthelemy, M. & Stanley, H. E. Classes of small-world networks. Proc. Natl Acad. Sci. USA 97, 11149–11152 (2000).

Amaral, L. A. N. & Ottino, J. M. Complex networks. Augmenting the framework for the study of complex systems. Eur. Phys. J. B 38, 147–162 (2004).

Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

Watts, D. J. & Strogatz, S. H. Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998). This seminal paper on small-world networks demonstrated their ubiquitous occurrence in natural, social and technological systems.

Sporns, O., Chialvo, D., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).

Bassett, D. S. & Bullmore, E. T. Small world brain networks. Neuroscientist 12, 512–523 (2006).

Reijneveld, J. C., Ponten, S. C., Berendse, H. W. & Stam, C. J. The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118, 2317–2331 (2007).

Stam, C. J. & Reijneveld, J. C. Graph theoretical analysis of complex networks in the brain. Nonlin. Biomed. Phys. 1, 3 (2007).

Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

Ravasz, E. & Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 026112 (2003).

Barthélemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B 38, 163–168 (2004).

Guimerà, R. & Amaral, L. A. N. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

Guimerà, R., Mossa, S., Turtschi, A. & Amaral, L. A. The worldwide air transportation network: anomalous centrality, community structure and cities' global roles. Proc. Natl Acad. Sci. USA 102, 7794–7799 (2005).

Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773–13778 (2005).

Laughlin, S. B. & Sejnowski, T. J. Communication in neuronal networks. Science 301, 1870–1874 (2003).

Braitenberg, V. & Schüz, A. Statistics and Geometry of Neuronal Connectivity (Springer, Berlin, 1998).

Hellwig, B. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121 (2000).

Averbeck, B. B. & Seo, M. The statistical neuroanatomy of frontal networks in the macaque. PLoS Comput. Biol. 4, e1000050 (2008).

Cherniak, C. Component placement optimization in the brain. J. Neurosci. 14, 2418–2427 (1994).

Chklovskii, D. B., Schikorski, T. & Stevens, C. F. Wiring optimization in cortical circuits. Neuron 34, 341–347 (2002).

Klyachko, V. A. & Stevens, C. F. Connectivity optimization and the positioning of cortical areas. Proc. Natl Acad. Sci. USA 100, 7937–7941 (2003).

White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

Silberberg, G., Grillner, S., LeBeau, F. E. N., Maex, R. & Markram, H. Synaptic pathways in neural microcircuits. Trends Neurosci. 28, 541–551 (2005).

Humphries, M. D., Gurney, K. & Prescott, T. J. The brainstem reticular formation is a small-world, not scale-free, network. Proc. Biol. Sci. 273, 503–511 (2006).

Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005). Presented recordings from multiple cortical neurons that revealed the small-world topology of cellular functional networks.

Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

Lichtman, J. W., Livet, J. & Sanes, J. R. A technicolour approach to the connectome. Nature Rev. Neurosci. 9, 417–422 (2008).

Felleman, D. J. & van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

Scannell, J. W., Burns, G. A. P. C., Hilgetag, C. C., O'Neil, M. A. & Young, M. P. The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277–299 (1999).

Sporns, O., Tononi, G. & Edelman, G. M. Theoretical neuroanatomy and the connectivity of the cerebral cortex. Cereb. Cortex 10, 127–141 (2000). One of the first papers to describe small-world topological properties, and to investigate the relationship between topology and complex dynamics, in brain networks.

Hilgetag, C. C., Burns, G. A., O'Neill, M. A., Scannell, J. W. & Young, M. P. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 91–110 (2000).

Sporns, O. & Zwi, J. The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004).

Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006). A comprehensive analysis of the relationship between economical wiring and small-world topology of brain networks, and its evolutionary significance.

Sporns, O. & Kötter, R. Motifs in brain networks. PLoS Biol. 2, 1910–1918 (2004).

Sporns, O., Honey, C. J. & Kötter, R. Identification and classification of hubs in brain networks. PLoS ONE 2, e1049 (2007).

Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comp. Biol. 1, e42 (2005). This review article argued for the fundamental importance of structural connectivity in cognitive neuroscience and proposed an effort to systematically collect data on structural connections in the human brain.

He, Y., Chen, Z. J. & Evans, A. C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007). This study was the first to derive a structural network of the human brain on the basis of correlations in cortical grey matter thickness measured using MRI.

Wright, I. C. et al. Supra-regional brain systems and the neuropathology of schizophrenia. Cereb. Cortex 9, 366–378 (1999).

Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J. & Evans, A. C. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb. Cortex 18, 2374–2381 (2008).

Iturria-Medina, Y. et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 36, 645–660 (2007).

Iturria-Medina, Y., Sotero, R. C., Canales-Rodriguez, E. J., Aleman-Gomez, Y. & Melie-Garcia, L. Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 40, 1064–1076 (2008).

Gong, G. et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 20 Jun 2008 (doi:10.1093/cercor/bhn102).

Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G. & Weisskoff, R. M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005).

Hagmann, P. et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2, e597 (2007).

Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008). This paper demonstrated the existence of modules, hubs and a structural core in the human anatomical network derived from DTI.

Parvizi, J., Van Hoesen, G. W., Buckwalter, J. & Damasio, A. Neural connections of the posteromedial cortex in the macaque. Proc. Natl Acad. Sci. USA 103, 1563–1568 (2006).

Cavanna, A. E. & Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006).

Alkire, M. T., Hudetz, A. G. & Tononi, G. Consciousness and anesthesia. Science 322, 876–880 (2008).

Stephan, K. E. et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 111–126 (2000).

McIntosh, A. R. et al. Network analysis of cortical visual pathways mapped with PET. J. Neurosci. 14, 655–666 (1994).

Bullmore, E. T. et al. How good is good enough in path analysis of fMRI data? Neuroimage 17, 573–582 (2002).

Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

Brovelli, A. et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl Acad. Sci. USA 101, 9849–9854 (2004).

Salvador, R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005).

Eguíluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M. & Apkarian, A. V. Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005).

Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. T. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006). This paper presented one of the first detailed analyses of small-world brain functional networks derived from human fMRI data.

Ferrarini, L. et al. Hierarchical functional modularity in the resting-state human brain. Hum. Brain Mapp. 1 Oct 2008 (doi:10.1002/hbm.20663).

Meunier, D., Achard, S., Morcom, A. & Bullmore, E. Age-related changes in modular organization of human brain functional networks. Neuroimage 44, 715–723 (2008).

Latora, V. & Marchiori, M. Efficient behaviour of small-world networks. Phys. Rev. Lett. 87, 198701 (2001). The first formulation of the economical small-world concept and its key parameters: topological efficiency and connection cost.

Latora, V. & Marchiori, M. Economic small-world behavior in weighted networks. Eur. Phys. J. B 32, 249–263 (2003).

Achard, S. & Bullmore, E. T. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007).

Bullmore, E. T. et al. Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 23, S234–S249 (2004).

Fair, D. A. et al. Development of distinct cortical networks through segregation and integration. Proc. Natl Acad. Sci. USA 104, 13507–13512 (2007).

Stam, C. J. & van Dijk, B. W. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163, 236–251 (2002).

Stam, C. J. Functional connectivity patterns of human magnetoencephalographic recordings: a small-world network? Neurosci. Lett. 355, 25–28 (2004).

Micheloyannis, S. et al. The influence of ageing on complex brain networks: a graph theoretical analysis. Hum. Brain Mapp. 30, 200–208 (2009).

Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. T. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl Acad. Sci. USA 103, 19518–19523 (2006). This study provides evidence for fractal or scale-invariant small-world networks across multiple frequency ranges and for their reconfiguration during cognitive tasks.

Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M. & Ilmoniemi, R. J. Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21, 1370–1377 (2001).

Maxim, V. et al. Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 25, 141–158 (2005).

Achard, S., Bassett, D. S., Meyer-Lindenberg, A. & Bullmore, E. T. Fractal connectivity of long memory networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 036104 (2008).

Schwarz, A., Gozzi, A. & Bifone, A. Community structure and modularity in networks of correlated brain activity. Magn. Reson. Imaging 26, 914–920 (2008).

Yu, S., Huang, D., Singer, W. & Nikolic, D. A small world of neuronal synchrony. Cereb. Cortex 18, 2891–2901 (2008). This paper was one of the first to apply graph theoretical techniques to map the topology of functionally characterized cortical neuronal circuits.

Schneidman, E., Still, S., Berry, M. J. & Bialek, W. Network information and connected correlations. Phys. Rev. Lett. 91, 238701 (2003).

Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).

Bettencourt, L. M., Stephens, G. J., Ham, M. I. & Gross, G. W. Functional structure of cortical neuronal networks grown in vitro. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 021915 (2007).

Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999). This landmark paper was the first to describe the scale-free organization of many complex networks and proposed a simple growth rule for their formation.

Van den Heuvel, M. P., Stam, C. J., Boersma, M. & Hulshoff Pol, H. E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008).

Passingham, R. E., Stephan, K. E. & Kötter, R. The anatomical basis of functional localization in the cortex. Nature Rev. Neurosci. 3, 606–616 (2002).

Alvarez, V. A. & Sabatini, B. L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97 (2007).

Grutzendler, J., Kasthuri, N. & Gan, W.-B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. Nature Rev. Neurosci. 7, 563–574 (2006).

Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).

Sasaki, T., Matsuki, N. & Ikegaya, Y. Metastability of active CA3 networks. J. Neurosci. 27, 517–528 (2007).

Valencia, M., Martinerie, J., Dupont, S. & Chavez, M. Dynamic small-world behaviour in functional brain networks unveiled by an event-related networks approach. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 050905 (2008).

Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001). Using quantitative metabolic and haemodynamic measures, this paper first proposed the existence of an organized pattern of resting or default-mode brain activity.

Gusnard, D. A. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nature Rev. Neurosci. 2, 685–694 (2001).

Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Rev. Neurosci. 8, 700–711 (2007).

Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

Koch, M. A., Norris, D. G. & Hund-Georgiadis, M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16, 241–250 (2002).

Greicius, M., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2008).

Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA (in the press).

Park, C. H., Kim, S. Y., Kim, Y.-H. & Kim, K. Comparison of the small-world topology between anatomical and functional connectivity in the human brain. Physica A 387, 5958–5962 (2008).

Galán, R. F. On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS ONE 3, e2148 (2008).

Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007). This paper used a large-scale computational model to relate topological features of structural and functional brain networks at multiple timescales.

Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn. Neurodyn. 2, 115–120 (2008).

Zhou, C., Zemanova, L., Zamora, G., Hilgetag, C. C. & Kurths, J. Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97, 238103 (2006).

Müller-Linow, M., Hilgetag, C. C. & Hütt, M.-T. Organization of excitable dynamics in hierarchical biological networks. PLoS Comput. Biol. 4, e1000190 (2008).

Kaiser, M., Görner, M. & Hilgetag, C. C. Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J. Phys. 9, 110 (2007).

Percha, B., Dzakpasu, R., Zochowski, M. & Parent, J. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 031909 (2005).

Siri, B., Quoy, M., Delord, B., Cessac, B. & Berry, H. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. J. Physiol. (Paris) 101, 136–148 (2007).

Catani, M. & fftyche, D. H. The rises and falls of disconnection syndromes. Brain 128, 2224–2239 (2005).

Supekar, K., Menon, V., Rubin, D., Musen, M. & Greicius, M. D. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput. Biol. 4, e1000100 (2008).

Stam, C. J., Jones, B. E., Nolte, G., Breakspear, M. & Scheltens, P. Small-world networks and functional connectivity in Alzheimer's disease. Cereb. Cortex 17, 92–99 (2007). This paper was one of the first to use graph theory to demonstrate disease-related differences in brain functional network topology.

He, Y., Chen, Z. & Evans, A. C. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J. Neurosci. 28, 8148–8159 (2008).

Stam, C. J. et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 24 Oct 2008 (doi:10.1093/brain/awn262).

Liu, Y. et al. Disrupted small-world networks in schizophrenia. Brain 131, 945–961 (2008).

Micheloyannis, S. et al. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr. Res. 87, 60–66 (2006).

Rubinov, M. et al. Small-world properties of nonlinear brain activity in schizophrenia. Hum. Brain Mapp. 10 Dec 2007 (doi:10.1002/hbm.20517).

Bassett, D. S. et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008).

Ponten, S. C., Bartolomei, F. & Stam, C. J. Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin. Neurophysiol. 118, 918–927 (2007).

Kramer, M. A., Kolaczyk, E. D. & Kirsch, H. E. Emergent network topology at seizure onset in humans. Epilepsy Res. 79, 173–186 (2008).

Schindler, K. A., Bialonski, S., Horstmann, M. T., Elger, C. E. & Lehnertz, K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18, 033119 (2008).

Wang, L. et al. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 24 Jan 2008 (doi:10.1002/hbm.20530).

De Vico Fallani, F. et al. Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum. Brain Mapp. 28, 1334–1346 (2007).

Smit, D. J., Stam, C. J., Posthuma, D., Boomsma, D. I. & de Geus, E. J. Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum. Brain Mapp. 29, 1368–1378 (2008).

Schmitt, J. E. et al. Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb. Cortex 18, 1737–1747 (2008).

Sporns, O. Small-world connectivity, motif composition and complexity of fractal neuronal connections. Biosystems 85, 55–64 (2006).

Kaiser, M., Robert, M., Andras, P. & Young, M. P. Simulation of robustness against lesions of cortical networks. Eur. J. Neurosci. 25, 3185–3192 (2007).

Honey, C. J. & Sporns, O. Dynamical consequences of lesions in cortical networks. Hum. Brain Mapp. 29, 802–809 (2008).

He, B. J., Shulman, G. L., Snyder, A. Z. & Corbetta, M. The role of impaired neuronal communication in neurological disorders. Curr. Opin. Neurol. 20, 655–660 (2007).

He, B. J. et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905–918 (2007).

Dyhrfjeld-Johnsen, J. et al. Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J. Neurophysiol. 97, 1566–1587 (2007). This paper used biologically realistic computational modelling to study the effects of epileptogenic cellular changes on the topology and dynamics of functional networks in the rat hippocampus.

Srinivas, K. V., Jain, R., Saurav, S. & Sikdar, S. K. Small-world network topology of hippocampal neuronal network is lost, in an in vivo glutamate injury model of epilepsy. Eur. J. Neurosci. 25, 3276–3286 (2007).

Netoff, T. I., Clewley, R., Arno, S., Keck, T. & White, J. A. Epilepsy in small-world networks. J. Neurosci. 24, 8075–8083 (2004).

Honey, G. D. et al. Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Brain 126, 1767–1781 (2003).

Schwarz, A. J., Gozzi, A., Reese, T., Heidbreder, C. A. & Bifone, A. Pharmacological modulation of functional connectivity: the correlation structure underlying the phMRI response to d-amphetamine modified by selective dopamine D3 receptor antagonist SB277011A. Magn. Reson. Imaging 25, 277811–277820 (2007).

Stoffers, D., Bosboom, J. L., Wolters, E. Ch., Stam, C. J. & Berendse, H. W. Dopaminergc modulation of cortico-cortical functional connectivity in Parkinson's disease: an MEG study. Exp. Neurol. 213, 191–195 (2008).

Bressler, S. & Kelso, J. A. S. Cortical coordination dynamics and cognition. Trends Cogn. Sci. 5, 26–36 (2001).

Barahona, M. & Pecora, L. M. Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002).

Shin, C. W. & Kim, S. Self-organized criticality and scale-free properties in emergent functional neural networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 045101 (2006).

Kitzbichler, M., Smith, M., Sorensen, C. & Bullmore, E. Broadband criticality of human brain network synchronization. PLoS Comput. Biol. (in the press).

Wang, J. et al. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum. Brain Mapp. 22 Jul 2008 (doi:10.1002/hbm.20623).

Roebroeck, A., Formisano, E. & Goebel, R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25, 230–242 (2005).

Bressler, S. L., Tang, W., Sylvester, C., Shulman, G. & Corbetta, M. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 28, 10056–10061 (2008).

Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977).

Erdös, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960).

Milgram, S. The small world problem. Psychol. Today 1, 61–67 (1967).

Humphries, M. D. & Gurney, K. Network “small-world-ness”: a quantitative method for determining canonical network equivalence. PLoS ONE 3, e0002051 (2008).

Harary, F. Graph Theory (Perseus, Reading, Massachusetts, 1969).

Euler, L. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 8, 128–140 (1736).

Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications (Cambridge Univ. Press, 1994).

Sporns, O. in Diffusion MRI: from Quantitative Measurement to In-Vivo Neuroanatomy (eds Johansen-Berg, H. & Behrens, T.) 309–332 (Academic, London, 2009).