Completions of Leavitt path algebras
Tóm tắt
We introduce a class of topologies on the Leavitt path algebra
$$L(\Gamma )$$
of a finite directed graph and decompose a graded completion
$${\widehat{L}}(\Gamma )$$
as a direct sum of minimal ideals.
Tài liệu tham khảo
Abrams, G.: Leavitt path algebras: the first decade. Bull. Math. Sci. 5, 59–120 (2015)
Abrams, G., Aranda, G.: Pino, The Leavitt path algebra of a graph. J. Algebra 293, 319–334 (2005)
Alahmadi, A., Alsulami, H.: Centers of Leavitt path algebras and their completions, arXiv:1507.07439 [math.RA]
Ara, P., Moreno, M., Pardo, E.: Non stable K-theory for graph algebras. J. Algebra Represent Theory 10, 157–178 (2007)
Alahmadi, A., Alsulami, H., Jain, S.K., Zelmanov, E.: Leavitt path algebras of finite Gelfand-Kirillov dimension. J. Algebra Appl. 11, 1250225 (2012). doi:10.1142/s0219498812502258
Alahmadi, A., Alsulami, H., Jain, S.K., Zelmanov, E.: Structure of Leavitt path algebras of polynomial growth. PNAS 10(38), 15222–15224 (2013)
Bang- Jensen, J., Gutin, G.: Digraphs: theory and applications. Springer Monographs in Mathematics (2009)
Bokut, L., Chen, Y.: Groebner–Shirshov bases and their calculation. Bull. Math. Sci. 4, 325–395 (2014)
Jacobson, N.: Some remarks on one sided inverses. Proc. AMS 352–355 (1950)