Completions of Leavitt path algebras

Bulletin of Mathematical Sciences - Tập 6 - Trang 145-161 - 2016
Adel Alahmadi1, Hamed Alsulami1
1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Tóm tắt

We introduce a class of topologies on the Leavitt path algebra $$L(\Gamma )$$ of a finite directed graph and decompose a graded completion $${\widehat{L}}(\Gamma )$$ as a direct sum of minimal ideals.

Tài liệu tham khảo

Abrams, G.: Leavitt path algebras: the first decade. Bull. Math. Sci. 5, 59–120 (2015) Abrams, G., Aranda, G.: Pino, The Leavitt path algebra of a graph. J. Algebra 293, 319–334 (2005) Alahmadi, A., Alsulami, H.: Centers of Leavitt path algebras and their completions, arXiv:1507.07439 [math.RA] Ara, P., Moreno, M., Pardo, E.: Non stable K-theory for graph algebras. J. Algebra Represent Theory 10, 157–178 (2007) Alahmadi, A., Alsulami, H., Jain, S.K., Zelmanov, E.: Leavitt path algebras of finite Gelfand-Kirillov dimension. J. Algebra Appl. 11, 1250225 (2012). doi:10.1142/s0219498812502258 Alahmadi, A., Alsulami, H., Jain, S.K., Zelmanov, E.: Structure of Leavitt path algebras of polynomial growth. PNAS 10(38), 15222–15224 (2013) Bang- Jensen, J., Gutin, G.: Digraphs: theory and applications. Springer Monographs in Mathematics (2009) Bokut, L., Chen, Y.: Groebner–Shirshov bases and their calculation. Bull. Math. Sci. 4, 325–395 (2014) Jacobson, N.: Some remarks on one sided inverses. Proc. AMS 352–355 (1950)