Completeness of the hyperarithmetic isomorphism equivalence relation

Advances in Mathematics - Tập 403 - Trang 108356 - 2022
Noam Greenberg1, Daniel Turetsky1
1School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, Wellington, New Zealand

Tài liệu tham khảo

Ash, 2000, Computable Structures and the Hyperarithmetical Hierarchy, vol. 144 Andrews, 2014, Universal computably enumerable equivalence relations, J. Symb. Log., 79, 60, 10.1017/jsl.2013.8 Ash, 1990, Labelling systems and r.e. structures, Ann. Pure Appl. Log., 47, 99, 10.1016/0168-0072(90)90065-A Bernardi, 1983, Classifying positive equivalence relations, J. Symb. Log., 48, 529, 10.2307/2273443 Ershov, 1977, Teoriya Numeratsiĭ Ershov, 1977, Theorie der Numerierungen. III, Z. Math. Log. Grundl. Math., 23, 289 Ershov, 1999, Theory of numberings, vol. 140, 473 Fokina, 2012, Isomorphism relations on computable structures, J. Symb. Log., 77, 122, 10.2178/jsl/1327068695 Fokina, 2012, Equivalence relations that are Σ30 complete for computable reducibility, 26 Friedman, 1989, A Borel reducibility theory for classes of countable structures, J. Symb. Log., 54, 894, 10.2307/2274750 Gandy, 1960, Proof of Mostowski's conjecture, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 8, 571 Gao, 2009, Invariant Descriptive Set Theory, vol. 293 Gao, 2001, Computably enumerable equivalence relations, Stud. Log., 67, 27, 10.1023/A:1010521410739 Kanovei, 2008, Borel Equivalence Relations. Structure and Classification, vol. 44 Kechris, 1999, New directions in descriptive set theory, Bull. Symb. Log., 5, 161, 10.2307/421088 Montalbán, 2014, Priority arguments via true stages, J. Symb. Log., 79, 1315, 10.1017/jsl.2014.11 Post, 1944, Recursively enumerable sets of positive integers and their decision problems, Bull. Am. Math. Soc., 50, 284, 10.1090/S0002-9904-1944-08111-1 Spector, 1959, Hyperarithmetical quantifiers, Fundam. Math., 48, 313, 10.4064/fm-48-3-313-320