Completeness of the hyperarithmetic isomorphism equivalence relation
Tài liệu tham khảo
Ash, 2000, Computable Structures and the Hyperarithmetical Hierarchy, vol. 144
Andrews, 2014, Universal computably enumerable equivalence relations, J. Symb. Log., 79, 60, 10.1017/jsl.2013.8
Ash, 1990, Labelling systems and r.e. structures, Ann. Pure Appl. Log., 47, 99, 10.1016/0168-0072(90)90065-A
Bernardi, 1983, Classifying positive equivalence relations, J. Symb. Log., 48, 529, 10.2307/2273443
Ershov, 1977, Teoriya Numeratsiĭ
Ershov, 1977, Theorie der Numerierungen. III, Z. Math. Log. Grundl. Math., 23, 289
Ershov, 1999, Theory of numberings, vol. 140, 473
Fokina, 2012, Isomorphism relations on computable structures, J. Symb. Log., 77, 122, 10.2178/jsl/1327068695
Fokina, 2012, Equivalence relations that are Σ30 complete for computable reducibility, 26
Friedman, 1989, A Borel reducibility theory for classes of countable structures, J. Symb. Log., 54, 894, 10.2307/2274750
Gandy, 1960, Proof of Mostowski's conjecture, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 8, 571
Gao, 2009, Invariant Descriptive Set Theory, vol. 293
Gao, 2001, Computably enumerable equivalence relations, Stud. Log., 67, 27, 10.1023/A:1010521410739
Kanovei, 2008, Borel Equivalence Relations. Structure and Classification, vol. 44
Kechris, 1999, New directions in descriptive set theory, Bull. Symb. Log., 5, 161, 10.2307/421088
Montalbán, 2014, Priority arguments via true stages, J. Symb. Log., 79, 1315, 10.1017/jsl.2014.11
Post, 1944, Recursively enumerable sets of positive integers and their decision problems, Bull. Am. Math. Soc., 50, 284, 10.1090/S0002-9904-1944-08111-1
Spector, 1959, Hyperarithmetical quantifiers, Fundam. Math., 48, 313, 10.4064/fm-48-3-313-320
