Completely Integrable Hamiltonian Systems with Weak Lyapunov Instability or Isochrony

Springer Science and Business Media LLC - Tập 303 Số 1 - Trang 73-87 - 2011
Gaetano Zampieri1
1Università di Verona, Dipartimento di Informatica, Strada Le Grazie, 15, I-37134, Verona, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. Encyclopaedia of Mathematical Sciences 3. Dynamical Systems III. Berlin-Heidelberg-New York: Springer-Verlag, 1988

Barone-Netto A., Cesar M.O., Gorni G.: A computational method for the stability of a class of mechanical systems. J. Diff. Eqs. 184, 1–19 (2002)

Calogero F.: Isochronous systems. Oxford University Press, Oxford (2008)

Cesar M.O., Barone-Netto A.: The existence of Liapunov functions for some non-conservative positional mechanical systems. J. Diff. Eqs. 91, 235–244 (1991)

Chavarriga J., Sabatini M.: A survey of isochronous systems. Qual. Theory Dyn. Syst. 1, 1–79 (1999)

Fassò F.: Superintegrable Hamiltonian systems: geometry and perturbations. Acta Appl. Math. 87, 93–121 (2005)

Françoise J.P.: Isochronous systems and perturbation theory. J. Nonlinear Math. Phys. 12(Supp. 1), 315–326 (2005)

Hietarinta J.: Direct methods for the search of the second invariant. Phys. Reps. 147, 87–154 (1987)

Mardešić P., Moser-Jauslin L., Rousseau C.: Darboux linearization and isochronous centers with a rational first integral. J. Diff. Eqs. 134, 216–268 (1997)

Urabe M.: Potential forces which yield periodic motions of fixed period. J. Math. Mech. 10, 569–578 (1961)

Whittaker E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Fourth ed. Dover Publications, New York (1944)

Zampieri G.: On the periodic oscillations of $${\ddot x=g(x)}$$ . J. Diff. Eqs. 78, 74–88 (1989)

Zampieri G.: Solving a collection of free coexistence-like problems in stability. Rend. Sem. Mat. Univ. Padova 81, 95–106 (1989)