Completely Integrable Hamiltonian Systems with Weak Lyapunov Instability or Isochrony
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. Encyclopaedia of Mathematical Sciences 3. Dynamical Systems III. Berlin-Heidelberg-New York: Springer-Verlag, 1988
Barone-Netto A., Cesar M.O., Gorni G.: A computational method for the stability of a class of mechanical systems. J. Diff. Eqs. 184, 1–19 (2002)
Cesar M.O., Barone-Netto A.: The existence of Liapunov functions for some non-conservative positional mechanical systems. J. Diff. Eqs. 91, 235–244 (1991)
Fassò F.: Superintegrable Hamiltonian systems: geometry and perturbations. Acta Appl. Math. 87, 93–121 (2005)
Françoise J.P.: Isochronous systems and perturbation theory. J. Nonlinear Math. Phys. 12(Supp. 1), 315–326 (2005)
Hietarinta J.: Direct methods for the search of the second invariant. Phys. Reps. 147, 87–154 (1987)
Mardešić P., Moser-Jauslin L., Rousseau C.: Darboux linearization and isochronous centers with a rational first integral. J. Diff. Eqs. 134, 216–268 (1997)
Urabe M.: Potential forces which yield periodic motions of fixed period. J. Math. Mech. 10, 569–578 (1961)
Whittaker E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Fourth ed. Dover Publications, New York (1944)
Zampieri G.: Solving a collection of free coexistence-like problems in stability. Rend. Sem. Mat. Univ. Padova 81, 95–106 (1989)
