Complete trajectory reconstruction from sparse mobile phone data

Guangshuo Chen1, Aline Carneiro Viana1, Marco Fiore2, Carlos Sarraute3
1Inria, Université Paris-Saclay, Palaiseau, France
2CNR-IEIIT, Torino, Italy
3Grandata Labs, San Francisco, USA

Tóm tắt

Abstract

Mobile phone data are a popular source of positioning information in many recent studies that have largely improved our understanding of human mobility. These data consist of time-stamped and geo-referenced communication events recorded by network operators, on a per-subscriber basis. They allow for unprecedented tracking of populations of millions of individuals over long periods that span months. Nevertheless, due to the uneven processes that govern mobile communications, the sampling of user locations provided by mobile phone data tends to be sparse and irregular in time, leading to substantial gaps in the resulting trajectory information. In this paper, we illustrate the severity of the problem through an empirical study of a large-scale Call Detail Records (CDR) dataset. We then propose Context-enhanced Trajectory Reconstruction, a new technique that hinges on tensor factorization as a core method to complete individual CDR-based trajectories. The proposed solution infers missing locations with a median displacement within two network cells from the actual position of the user, on an hourly basis and even when as little as 1% of her original mobility is known. Our approach lets us revisit seminal works in the light of complete mobility data, unveiling potential biases that incomplete trajectories obtained from legacy CDR induce on key results about human mobility laws, trajectory uniqueness, and movement predictability.

Từ khóa


Tài liệu tham khảo

Blondel VD, Decuyper A, Krings G (2015) A survey of results on mobile phone datasets analysis. EPJ Data Sci 4(1):10. https://doi.org/10.1140/epjds/s13688-015-0046-0

Naboulsi D, Fiore M, Ribot S, Stanica R (2016) Large-scale mobile traffic analysis: a survey. IEEE Commun Surv Tutor 18(1):124–161. https://doi.org/10.1109/comst.2015.2491361

Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782. https://doi.org/10.1038/nature06958

Song C, Qu Z, Blumm N, Barabasi A-L (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021. https://doi.org/10.1126/science.1177170

de Montjoye Y-A, Hidalgo CA, Verleysen M, Blondel VD (2013) Unique in the crowd: the privacy bounds of human mobility. Sci Rep 3(1):1376. https://doi.org/10.1038/srep01376

Ahas R, Silm S, Saluveer E, Järv O (2009) Modelling home and work locations of populations using passive mobile positioning data. In: Gartner G, Rehrl K (eds) Location based services and TeleCartography II: from sensor fusion to context models. Springer, Berlin, pp 301–315. https://doi.org/10.1007/978-3-540-87393-8_18

Schneider CM, Belik V, Couronne T, Smoreda Z, Gonzalez MC (2013) Unravelling daily human mobility motifs. J R Soc Interface 10(84):20130246. https://doi.org/10.1098/rsif.2013.0246

Ferreira N, Poco J, Vo HT, Freire J, Silva CT (2013) Visual exploration of big spatio-temporal urban data: a study of New York city taxi trips. IEEE Trans Vis Comput Graph 19(12):2149–2158. https://doi.org/10.1109/TVCG.2013.226

Zhang D, Zhao J, Zhang F, He T (2015) coMobile: real-time human mobility modeling at urban scale using multi-view learning. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems. SIGSPATIAL ’15. ACM, New York, pp 40:1–40:10. https://doi.org/10.1145/2820783.2820821

Zang H, Bolot JC (2007) Mining call and mobility data to improve paging efficiency in cellular networks. In: Proceedings of the 13th annual ACM international conference on mobile computing and networking. MobiCom ’07. ACM, New York, pp 123–134. https://doi.org/10.1145/1287853.1287868

Oliveira EMR, Viana AC (2014) From routine to network deployment for data offloading in metropolitan areas. In: 2014 eleventh annual IEEE international conference on sensing, communication, and networking (SECON), pp 126–134. https://doi.org/10.1109/SAHCN.2014.6990335

Frias-Martinez E, Williamson G, Frias-Martinez V (2011) An agent-based model of epidemic spread using human mobility and social network information. In: 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international conference on social computing, pp 57–64. https://doi.org/10.1109/PASSAT/SocialCom.2011.142

Chen G, Hoteit S, Viana AC, Fiore M, Sarraute C (2018) Enriching sparse mobility information in call detail records. Comput Commun 122:44–58. https://doi.org/10.1016/j.comcom.2018.03.012

Ranjan G, Zang H, Zhang Z-L, Bolot J (2012) Are call detail records biased for sampling human mobility? Mob Comput Commun Rev 16(3):33. https://doi.org/10.1145/2412096.2412101

Sarraute C, Blanc P, Burroni J (2014) A study of age and gender seen through mobile phone usage patterns in Mexico. In: 2014 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2014), pp 836–843. https://doi.org/10.1109/ASONAM.2014.6921683

Jo H-H, Karsai M, Karikoski J, Kaski K (2012) Spatiotemporal correlations of handset-based service usages. EPJ Data Sci 1(1):1. https://doi.org/10.1140/epjds10

Hoteit S, Chen G, Viana A, Fiore M (2016) Filling the gaps: on the completion of sparse call detail records for mobility analysis. In: Proceedings of the eleventh ACM workshop on challenged networks. CHANTS ’16. ACM, New York, pp 45–50. https://doi.org/10.1145/2979683.2979685

Ficek M, Kencl L (2012) Inter-call mobility model: a spatio-temporal refinement of call data records using a Gaussian mixture model. In: 2012 proceedings IEEE INFOCOM, pp 469–477. https://doi.org/10.1109/INFCOM.2012.6195786

Hoteit S, Secci S, Sobolevsky S, Ratti C, Pujolle G (2014) Estimating human trajectories and hotspots through mobile phone data. Comput Netw 64:296–307. https://doi.org/10.1016/j.comnet.2014.02.011

Seshadri M, Machiraju S, Sridharan A, Bolot J, Faloutsos C, Leskove J (2008) Mobile call graphs: beyond power-law and lognormal distributions. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’08. ACM, New York, pp 596–604. https://doi.org/10.1145/1401890.1401963

Iovan C, Olteanu-Raimond A-M, Couronné T, Smoreda Z (2013) Moving and calling: mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies. In: Vandenbroucke D, Bucher B, Crompvoets J (eds) Geographic information science at the heart of Europe. Springer, Cham, pp 247–265. https://doi.org/10.1007/978-3-319-00615-4-14

Katsikouli P, Fiore M, Furno A, Stanica R (2019) Characterizing and removing oscillations in mobile phone location data. In: IEEE WoWMoM 2019—20th IEEE international symposium on a world of wireless, mobile and multimedia networks, Washington DC, United States. https://hal.inria.fr/hal-02110719

Douglass RW, Meyer DA, Ram M, Rideout D, Song D (2015) High resolution population estimates from telecommunications data. EPJ Data Sci 4(1):4. https://doi.org/10.1140/epjds/s13688-015-0040-6

Oliveira EMR, Viana AC, Sarraute C, Brea J, Alvarez-Hamelin I (2016) On the regularity of human mobility. Pervasive Mob Comput 33:73–90. https://doi.org/10.1016/j.pmcj.2016.04.005

Kong L, Xia M, Liu X-Y, Chen G, Gu Y, Wu M-Y, Liu X (2014) Data loss and reconstruction in wireless sensor networks. IEEE Trans Parallel Distrib Syst 25(11):2818–2828. https://doi.org/10.1109/tpds.2013.269

Karatzoglou A, Amatriain X, Baltrunas L, Oliver N (2010) Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the fourth ACM conference on recommender systems. RecSys ’10. ACM, New York, pp 79–86. https://doi.org/10.1145/1864708.1864727

Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500. https://doi.org/10.1137/07070111x

Portela JN, Alencar MS (2006) Cellular network as a multiplicatively weighted Voronoi diagram. In: CCNC 2006. 2006 3rd IEEE consumer communications and networking conference, 2006, vol 2, pp 913–917. https://doi.org/10.1109/CCNC.2006.1593171

Jeong J, Leconte M, Proutiere A (2016) Cluster-aided mobility predictions. In: Proceedings of the 35th annual IEEE international conference on computer communications. INFOCOM’16. https://doi.org/10.1109/INFOCOM.2016.7524491

Shlesinger MF, Zaslavsky GM, Frisch U (1995) Lévy flights and related topics in physics. Lecture notes in physics, vol 450. Springer, Berlin. https://doi.org/10.1007/3-540-59222-9

Paul U, Subramanian AP, Buddhikot MM, Das SR (2011) Understanding traffic dynamics in cellular data networks. In: 2011 proceedings IEEE INFOCOM, pp 882–890. https://doi.org/10.1109/INFCOM.2011.5935313

Couronné T, Smoreda Z, Raimond AO (2013) Chatty Mobiles: individual mobility and communication patterns. CoRR abs/1301.6553. http://arxiv.org/abs/1301.6553

Hess A, Marsh I, Gillblad D (2015) Exploring communication and mobility behavior of 3G network users and its temporal consistency. In: 2015 IEEE international conference on communications (ICC), pp 5916–5921. https://doi.org/10.1109/ICC.2015.7249265