Complete or partial loss of the Y chromosome in an unselected cohort of 865 non-vasectomized, azoospermic men

Basic and Clinical Andrology - Tập 33 - Trang 1-13 - 2023
J Fedder1,2,3, C Fagerberg4, MW Jørgensen5, CH Gravholt6,7,8, A Berglund4,6,9, UB Knudsen3,8, A Skakkebæk6,8,9
1Centre of Andrology & Fertility Clinic, Odense University Hospital, Odense, Denmark
2Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark
3Fertility Clinic, Horsens Hospital, Horsens, Denmark
4Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
5Department of Clinical Genetics, Lillebælt Hospital, Vejle, Denmark
6Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
7Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
8Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
9Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark

Tóm tắt

Structural abnormalities as well as minor variations of the Y chromosome may cause disorders of sex differentiation or, more frequently, azoospermia. This study aimed to determine the prevalence of loss of Y chromosome material within the spectrum ranging from small microdeletions in the azoospermia factor region (AZF) to complete loss of the Y chromosome in azoospermic men. Eleven of 865 azoospermic men (1.3%) collected from 1997 to 2022 were found to have a karyotype including a 45,X cell line. Two had a pure 45,X karyotype and nine had a 45,X/46,XY mosaic karyotype. The AZF region, or part of it, was deleted in eight of the nine men with a structural abnormal Y-chromosome. Seven men had a karyotype with a structural abnormal Y chromosome in a non-mosaic form. In addition, Y chromosome microdeletions were found in 34 men with a structural normal Y chromosome. No congenital malformations were detected by echocardiography and ultrasonography of the kidneys of the 11 men with a 45,X mosaic or non-mosaic cell line. In men with azoospermia, Y chromosome loss ranging from small microdeletions to complete loss of the Y chromosome was found in 6.1% (53/865). Partial AZFb microdeletions may give a milder testicular phenotype compared to complete AZFb microdeletions.

Tài liệu tham khảo

Graves JA. The origin and function of the mammalian Y chromosome and Y-borne genes – an evolving understanding. Bioessays. 1995;17:311–20. https://doi.org/10.1002/bies.950170407. Kratochvil L, Stöck M, Rovatsos M, Bullejos M, Herpin A, Jeffries DL, et al. Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Phil Trans R Soc B. 2021;376:20200097. https://doi.org/10.1098/rstb.2020.0097. Waters PD, Wallis MC, Graves JAM. Mammalian sex – Origin and evolution of the Y chromosome and SRY. Seminars Cell Dev Biol. 2007;18:389–400. https://doi.org/10.1016/j.semcbd.2007.02.007. Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al. The complete sequence of a human Y chromosome. Nature. 2023;621:344–54. https://doi.org/10.1038/s41586-023-06457-y. Hallast P, Ebert P, Loftus M, Yilmaz F, Audano PA, Logsdon GA, et al. Assembly of 43 human Y chromosomes reveals extensive complexity and variation. Nature. 2023;621:355–64. https://doi.org/10.1038/s41586-023-06425-6. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346:240–4. https://doi.org/10.1038/346240a0. Simoni M, Tüttelmann F, Gromoll J, Nieschlag E. Clinical consequences of microdeletions of the Y chromosome: the extended Münster experience. Reprod BioMed online. 2008;16:289–303. https://doi.org/10.1016/s1472-6483(10)60588-3. Krausz C, Hoefsloot L, Simoni M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2:5–19. https://doi.org/10.1111/j.2047-2927.2013.00173.x. Hsu LYF. Phenotype/karyotype correlations of Y chromosome aneuploidy with emphasis on structural aberrations in postnatally diagnosed cases. Am J Med Genet. 1994;53:108–40. https://doi.org/10.1002/ajmg.1320530204. Ferlin A, Arredi B, Speltra E, Cazzadore C, Selice R, Garolla A, et al. Molecular and clinical characterization of Y chromosome microdeletions in infertile men: A 10-year experience in Italy. J Clin Endocrinol Metab. 2007;92:762–70. https://doi.org/10.1210/jc.2006-1981. Reijo R, Lee TY, Salo P, Alagappan R, Brown LG, Rosenberg M, et al. Diverse spermatogenic defects in human caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nature Genet. 1995;10:383–93. https://doi.org/10.1038/ng0895-383. Fedder J, Jørgensen MW, Engvad B. Prevalence og CBAVD in azoospermic men carrying pathogenic CFTR mutations – Evaluated in a cohort of 639 non-vasectomized azoospermic men. Andrology. 2021;9:588–98. https://doi.org/10.1111/andr.12925. Fedder J, Crüger D, Østergaard B, Bruun Petersen G. Etiology of azoospemia in 100 consecutive non-vasectomized men. Fertil Steril. 2004;82:1463–5. https://doi.org/10.1016/j.fertnstert.2004.06.035. Bojesen A, Juul S, Gravholt CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88:622–6. https://doi.org/10.1210/jc.2002-021491. Van Assche E, Bonduelle M, Tournaye H, Joris H, Verheyen G, Devroey P, Van Steirteghem A, Liebaers I. Cytogenetics of infertile men. Hum Reprod. 1996;11(suppl 4):1–24. https://doi.org/10.1093/humrep/11.suppl_4.1. Hook EB, Wharburton D. Turner syndrome revisited: review of new data supports the hypothesis that all viable 45, X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss. Hum Genet. 2014;133:417–24. https://doi.org/10.1007/s00439-014-1420-x. Fedder J. Prevalence of small testicular hyperechogenic foci in subgroups of 382 non-vasectomized, azoospermic men. A retrospective cohort study. Andrology. 2017;5:248–55. https://doi.org/10.1111/andr.12291. Gravholt CH, Viuff M, Just J, Sandahl K, Brun S, van der Velden J, et al. The changing face of Turner syndrome. Endocr Rev. 2023;44:33–69. https://doi.org/10.1210/endrev/bnac016. Fedder J, Gravholt CH, Kristensen SG, Marcussen N, Engvad B, Milton AM, Andersen CY. Testicular sperm sampling by subcapsular orchiectomy in Klinefelter patients: A new simplified treatment approach. Urology. 2015;86:744–50. https://doi.org/10.1016/j.urology.2015.06.044. Fedder J. History of cryptorchidism and ejaculate volume as simple predictors for the presence of testicular sperm. Syst Biol Reprod Med. 2011;57:154–61. https://doi.org/10.3109/19396368.2010.550796. Stephen EH, Chandra A. Declining estimates of infertility in the United States: 1982–2002. Fertil Steril. 2006;86:516–23. https://doi.org/10.1016/j.fertnstert.2006.02.129. Nielsen J, Wohlert M. Chromosome abnormalities found among 34910 newborn children: results from a 13-year incidence study in Århus, Denmark. Hum Genet. 1991;87:81–3. https://doi.org/10.1007/BF01213097. Patsalis PC, Skordis N, Sismani C, Kousoulidou L, Koumbaris G, Eftychi C, et al. Identification of high frequency of Y chromosome deletions in patients with sex chromosome mosaicism and correlation with the clinical phenotype and Y-chromosome instability. Am J Med Genet A. 2005;135:145–9. https://doi.org/10.1002/ajmg.a.30712. Guttenbach M, Koschorz B, Bernthaler U, Grimm T, Schmid M. Sex chromosome loss and aging: In situ hybridization studies on human interphase nuclei. Am J Hum Genet. 1995;57:1143–50. Nielsen J, Videbech P. Diagnosing of chromosome abnormalities in Denmark. Clin Genet. 1984;26:422–8. https://doi.org/10.1111/j.1399-0004.1984.tb01082.x. Lange J, Skaletsky H, van Daalen SKM, Embry SL, Korver CM, Brown LG, et al. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell. 2009;138:855–69. https://doi.org/10.1016/j.cell.2009.07.042. Reshmi SC, Miller JL, Deplewski D, Close C, Henderson LJ, Littlejohn E, et al. Evidence of a mechanism for isodicentric chromosome Y formation in a 45, X/46, X, idic(Y)(p11.31)/46, X, del(Y)(p11.31) mosaic karyotype. Eur J Med Genet. 2011;54:161–4. https://doi.org/10.1016/j.ejmg.2010.11.002. Layman LC, Tho SPT, Clark AD, Kulharya A, McDonough PG. Phenotypic spectrum of 45, X/46, XY males with a ring Y chromosome and bilaterally descended testes. Fertil Steril. 2009;91:791–7. https://doi.org/10.1016/j.fertnstert.2007.12.078. Jacobs PA, Brunton M, Brown MC, Doll R, Goldstein H. Change of human chromosome count distributions with age: Evidence for a sex difference. Nature. 1963;197:1080–1. https://doi.org/10.1038/1971080a0. Lin S-H, Loftfield E, Sampson JN, Zhou W, Yeager M, Freedman ND, et al. Mosaic chromosome Y loss is associated with alterations in blood cell counts in UK Biobank men. Sci Rep. 2020;10:3655. https://doi.org/10.1038/s41598-020-59963-8. Cameron-Pimblett A, LaRosa C, King TFJ, Davies MC, Conway GS. The Turner syndrome life course project: Karyotype-phenotype analyses across the lifespan. Clin Endocrinol. 2017;87:532–8. https://doi.org/10.1111/cen.13394. Fryns JP. Y-chromosome mosaicism with ring Y-chromosome/idic(Y)(11.2) and “normal ovarian development. Ann Genet. 2001;44:169. https://doi.org/10.1016/s0003-3995(01)01044-9. Dumanski JP, Rasi C, Lönn M, Davies H, Ingelsson M, et al. Smoking is associated with mosaic loss of chromosome Y. Science. 2015;347:81–3. https://doi.org/10.1126/science.1262092. Forsberg LA, Rasi C, Malmqvist N, Davies H, Pasupulati S, et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nature Genet. 2014;46:624–9. https://doi.org/10.1038/ng.2966. Dumanski JP, Lambert J-C, Rasi C, Giedraitis V, Davies H, et al. Mosaic loss of chromosome Y in blood is associated with Alzheimer disease. Am J Hum Genet. 2016;98:1208–19. https://doi.org/10.1016/j.ajhg.2016.05.014. Guo X, Dai X, Zhou T, Wang H, Ni J, Xue J, Wang X. Mosaic loss of human Y chromosome: what, how and why. Hum Genet. 2020;139:421–46. Wright DJ, Day FR, Kerrison ND, Zink F, Cardona A, Sulem P, et al. Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nat Genet. 2017;49:674–9. https://doi.org/10.1038/ng.3821. Lenormand T, Roze D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science. 2022;375:663–6. https://doi.org/10.1126/science.abj1813. Just W, Rau W, Vogel W, Akhverdian M, Fredga K, Graves JAM, Lyapunova E. Absence of Sry in species of the vole Ellobius. Nature Genet. 1995;11:117–8. https://doi.org/10.1038/ng1095-117. Soullier S, Hanni C, Catzeflis F, Berta P, Laudet V. Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mammalian Genome. 1998;9:590–2. https://doi.org/10.1007/s003359900823. Fedder J. Sex determination and male differentiation in Southern swordtail fishes: Evaluation from an evolutionary perspective. Fishes. 2023;8:407. https://doi.org/10.3390/fishes8080407. Pan Q, Kay T, Depincé A, Adolfi M, Schartl M, Guiguen Y, Herpin A. Evolution of master sex determiners: TGFβ signaling pathways at regulatory crossroads. Phil Trans R Soc. 2021;B376:20200091. https://doi.org/10.1098/rstb.2020.0091. Smith-Bouvier DL, Divekar AA, Sasidhat M, Du S, Tiwari-Woodruff SK, King JK, et al. A role of sex chromosome complement in the female bias in autoimmune disease. J Exp Med. 2008;205:1099–108. https://doi.org/10.1084/jem.20070850. Chen X, McClusky R, Itoh Y, Reue K, Arnold AP. X and Y chromosome complement influence adiposity and metabolism in mice. Endocrinology. 2013;154:1092–104. https://doi.org/10.1210/en.2012-2098. Roman AKS, Page DC. A strategic research alliance: Turner syndrome and sex differences. Am J Med Genet C Semin Med Genet. 2019;181:59–67. https://doi.org/10.1002/ajmg.c.31677. Petit P, Unglik A, Fryns JP. Translocation 46, X.t(Y:14)(q122;q111) in a case of sterility in the male. Ann Génét. 1982;25:63–4. Hillman LS, Sekhon GS, Kaufman RL, Ho C-K. Y/21 translocation with gonadal and renal dysgenesis and cardiac rupture. Am J Dis Child. 1974;128:560–3. https://doi.org/10.1001/archpedi1974.02110290130023. Marchini A, Ogata T, Rappold GA. A track record on SHOX: From basic research to complex models and therapy. Endocr Rev. 2016;37:417–48. https://doi.org/10.1210/er.2016-1036. Tukiainen T, Villani A-C, Yen A, Rivas MA, Marshall JL, Satija R, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550:244–8. https://doi.org/10.1038/nature24265. Ljubicic ML, Jørgensen A, Acerini C, Andrade J, Balsamo A, Bertelloni S, et al. Clinical but not histological outcomes in males with 45, X/46, XY mosaicism vary depending on reason for diagnosis. J Clin Endocrinol Metab. 2019;104:4366–81. https://doi.org/10.1210/jc.2018-02752. De Groote K, Cools M, De Schepper J, Craen M, Francois I, Devos D, et al. Cardiovascular pathology in males and females with 45, X/46 XY mosaicism. PLoS One. 2013;8:e54977. https://doi.org/10.1371/journal.pone.0054977. Roberts WC. The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol. 1970;26:72–83. https://doi.org/10.1016/0002-9149(70)90761-7. Hojat L, Schweiger M. 45, X/46, XY mosaicism and possible association with hypothyroidism in males. Clin Pediatr. 2016;55:549–51. https://doi.org/10.1177/0009922815600439. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome – integrating genetics, neuropsychology and endocrinology. Endocr Rev. 2018;39:389–423. https://doi.org/10.1210/er.2017-00212. Simoni M, Bakker E, Krausz C. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions. State of the art 2004. Int J Androl. 2004;27:240–9. https://doi.org/10.1111/j.1365-2605.2004.00495.x. Saxena R, Brown LG, Hawkins T, Alagappan RK, Skaletsky H, Reeve MP, et al. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nature Genet. 1996;14:292–7. https://doi.org/10.1038/ng1196-292. Maymon BBS, Paz G, Elliott DJ, Hammel I, Kleiman SE, Yogev L, et al. Maturation phenotype of Sertoli cells in testicular biopsies of azoospermic men. Hum Reprod. 2000;15:1537–42. https://doi.org/10.1093/humrep/15.7.1537. Krausz C, Quintana-Murci L, McElreavey K. Prognostic value of Y deletion analysis. What is the clinical prognostic value of Y chromosome microdeletion analysis? Hum Reprod. 2000;15:1431–4. https://doi.org/10.1093/humrep/15.7.1431. Brandell RA, Mielnik A, Liotta D, Ye Z, Veeck LL, Palermo GD, et al. AZFb deletions predict the absence of spermatozoa with testicular sperm extraction: preliminary report of a prognostic genetic test. Hum Reprod. 1998;13:2812–5. https://doi.org/10.1093/humrep/13.10.2812. Colaco S, Modi D. Consequences of Y chromosome microdeletions beyond male infertility. J Assist Reprod Genet. 2019;36:1329–37. https://doi.org/10.1007/s10815-019-01492-z. Maan AA, Eales J, Akbarow A, Rowland J, Xu X, Jobling MA, et al. The Y chromosome: a blueprint for men’s health? Eur J Hum Genet. 2017;25:1181–8. https://doi.org/10.1038/ejhg.2017.128. Jorgez CJ, Weedin JW, Sahin A, Tannour-Louet M, Han S, Bournat JC, et al. Aberrations in pseudoautosomal regions (PARs) found in infertile men with Y-chromosome microdeletions. J Clin Endocrinol Metab. 2011;96:E674-9. https://doi.org/10.1210/jc.2010-2018. Castro A, Rodriguez F, Flóres M, López P, Curotto B, Matinez D, et al. Pseudoautosomal abnormalities in terminal AZFb+c deletions are associated with isochromosomes Yp and may lead to abnormal growth and neuropsychiatric function. Hum Reprod. 2017;32:465–75. https://doi.org/10.1093/humrep/dew333. Pacenza N, Pasqualini T, Gottlieb S, Knoblovits P, Costanzo PR, Usher JS, Rey RA, Martinez MP, Aszpis S. Clinical presentation of Klinefelter’s syndrome: Differences according to age. Int J Endocrinol. 2012;2012:324835. https://doi.org/10.1155/2012/324835. 6 pages.