Complete genome sequence of the molybdenum-resistant bacterium Bacillus subtilis strain LM 4–2
Tóm tắt
Bacillus subtilis LM 4–2, a Gram-positive bacterium was isolated from a molybdenum mine in Luoyang city. Due to its strong resistance to molybdate and potential utilization in bioremediation of molybdate-polluted area, we describe the features of this organism, as well as its complete genome sequence and annotation. The genome was composed of a circular 4,069,266 bp chromosome with average GC content of 43.83 %, which included 4149 predicted ORFs and 116 RNA genes. Additionally, 687 transporter-coding and 116 redox protein-coding genes were identified in the strain LM 4–2 genome.
Tài liệu tham khảo
Lim HK, Syed MA, Shukor MY. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J Basic Microbiol. 2012;52(3):296–305.
Halmi MI, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al. Hexavalent molybdenum reduction to mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiellaoxytoca strain DRY14. Biomed Res Int. 2013;2013:384541.
Sugio T, Tsujita Y, Katagiri T, Inagaki K, Tano T. Reduction of Mo6+ with elemental sulfur by Thiobacillus ferrooxidans. J Bacteriol. 1988;170(12):5956–9.
Shukor A, Yunus M, Lee CH, Omar I, Karim MIA, Syed MA, et al. Isolation and characterization of a molybdenum reducing enzyme in Enterobacter cloacae strain 48. Asia Pac J Mol Biol Biotechnol. 2003;11(2):261–72.
Shukor MY, Halmi MIE, Rahman MFA, Shamaan NA, Syed MA. Molybdenum reduction to molybdenum blue in Serratia sp. strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme. Biomed Res Int. 2014;2014:853084. doi:10.1155/2014/853084.
Shukor MY, Rahman MF, Shamaan NA, Syed MA. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13. J Basic Microbiol. 2009;49 Suppl 1:S43–54.
Shukor MY, Rahman MF, Suhaili Z, Shamaan NA, Syed MA. Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus. Folia Microbiol (Praha). 2010;55(2):137–43.
Shukor MY, Ahmad SA, Nadzir MMM, Abdullah MP, Shamaan NA, Syed MA. Molybdate reduction by Pseudomonas sp. strain DRY2. J Appl Microbiol. 2010;108(6):2050–8. doi:10.1111/j.1365-2672.2009.04604.x.
Campbell AM, del Campillo-Campbell A, Villaret DB. Molybdate reduction by Escherichia coli K-12 and its chi mutants. Proc Natl Acad Sci U S A. 1985;82(1):227–31.
Neunhäuserer C, Berreck M, Insam H. Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. J Water Air Soil Poll. 2001;128:85–96.
Nasernejad B, Kaghazchi T, Edrisi M, Sohrabi M. Bioleaching of molybdenum from low-grade copper ore. Process Biochem. 1999;35:437–40.
Olson GJ, Clark TR. Bioleaching of molybdenite. Hydrometallurgy. 2008;93:10–5.
Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26:541–7.
Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87(12):4576–9.
Gibbons NE, Murray RGE. Proposals concerning the higher taxa of bacteria. Int J Syst Bacteriol. 1978;28:1–6.
Garrity GM, Holt JG. The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM, editors. Bergey’s manual of systematic bacteriology.Volume 1. 2nd ed. New York: Springer; 2001. p. 119–69.
Murray RGE. The higher taxa, or, a place for everything...? In: Holt JG, editor. Bergey’s manual of systematic bacteriology. Volume 1. 1st ed. Baltimore: The Williams and Wilkins Co; 1984. p. 31–4.
List no.132. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol. 2010;60:469–72.
Ludwig W, Schleifer KH, Whitman WB. Bacilli class.nov. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB, editors. Bergey’s manual of systematic bacteriology. Volume 3. 2nd ed. New York: Springer-Verlag; 2009. p. 19–20.
Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:225–420.
Prévot AR. In: Hauderoy P, Ehringer G, Guillot G, Magrou J, Prévot AR, Rosset D, Urbain A, editors. Dictionnaire des bactéries pathogènes. 2nd ed. Paris: MassonetCie; 1953. p. 1–692.
Fischer A. Untersuchungen über bakterien. Jahrbuch für Wissenschaftliche Botanik. 1895;27:1–163.
Cohn F. Untersuchungen über bakterien. Beitrage zur Biologie der Pflanzen Heft 2. 1872;1:127–224.
Gibson T, Gordon RE. Genus I. Bacillus Cohn 1872. In: Buchanan RE, Gibbons, editors. Bergey’s manual of determinative bacteriology. 8th ed. Baltimore: Williams and Wilkins Co; 1974. p. 529–50.
Nakamura LK, Roberts MS, Cohan FM. Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilissubtilis subsp. nov. and Bacillussubtilis spizizenii subsp. Nov. Int J Syst Bacteriol. 1999;49 Pt 3:1211–5.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:225–420.
Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, et al. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int J Syst Evol Microbiol. 2011;61(8):1786–801.
Goto K, Fujita R, Kato Y, Asahara M, Yokota A. Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (= NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol. 2004;54(2):419–27.
Ehrenberg CG. Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinsten Raumes. Physikalische Abhandlungen der Koeniglichen Akademie der Wissenschaften zu Berlin aus den Jahren. 1833;1835:143–336.
Pichinoty F, De Barjac H, Mandel M, Asselineau J. Description of Bacillus azotoformans sp. nov. Int J Syst Bacteriol. 1983;33(3):660–2.
Santini JM, Streimann IC, Vanden Hoven RN. Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Int J Syst Evol Microbiol. 2004;54(6):2241–4.
Spanka R, Fritze D. Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int J Syst Evol Microbiol. 1993;43(1):150–6.
Rodriguez-R LM, Konstantinidis KT. By passing cultivation to identify bacterial species. Microbe. 2014;9(3):111–8.
Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64(2):346–51.
Guo Q, Li S, Lu X, Zhang X, Wang P, Ma P. Complete genome sequence of Bacillus subtilis BAB-1, a biocontrol agent for suppression of tomato gray mold. Genome announcements. 2014;2(4):e00744–14.
Motozaki S, Tsunoda T, Aoki R, Okumura S, Kondo Y, Muramatsu N, et al. Method for preparation of inosine. US Patent 3,111,459 dated Nov 19 1963.
Jansen EF, Hirschmann DJ. Subtilin-an antibacterial product of Bacillus subtilis. Culturing conditions and properties. Arch Biochem Biophys. 1944;4:297–309.
Masahiko Y, Makoto K, Teluji H, Ikuo N, Akira I, Yuichi T, et al. Method for the production of guanosine and 5'-guanylic acid. US Patent 3,607,649 dated Sep 21 1971.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Reddy TB, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J, et al. The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta) genome project classification. Nucleic Acids Res. 2015;43(Database issue):D1099–106.
You XY, Guo X, Zheng HJ, Zhang MJ, Liu LJ, Zhu YQ, et al. Unraveling the Acidithiobacillus caldus complete genome and its central metabolisms for carbon assimilation. J Genet Genomics. 2011;38(6):243–52.
LangmeadB SSL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23(6):673–9.
Borodovsky M, McIninch J. GeneMark: parallel gene recognition for both DNA strands. Computers & Chemistry. 1993;17(19):123–33.
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204-D212.
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222-D226.
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(Database issue):D222-D230.
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015. gkv1070.
Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8.
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.
Saier MH, Tran CV, Barabote RD. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 2006;34 suppl1:D181–6.
Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics. 2009;25(1):119–20.
Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA. Molybdate reduction to molybdenum blue by an Antarctic bacterium. BioMed Res Int. 2013;2013:871941. doi:10.1155/2013/871941.