Complete genome sequence of the industrial l-lysine production strain [Brevibacterium] flavum CCM 251

Biologia - Tập 77 - Trang 1423-1428 - 2022
Maria Kajsikova1, Michal Kajsik2, Hana Drahovska3, Gabriela Bukovska1
1Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Bratislava, Slovakia
2Comenius University Science Park, Bratislava, Slovakia
3Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia

Tóm tắt

[Brevibacterium] flavum CCM 251 is used to produce l-lysine in the Biotika biotech factory in Slovenská Ľupča, Slovakia. [B.] flavum CCM 251 is the exclusive host of the lytic corynephage BFK20, which has been extensively studied. We have sequenced the complete genome of [B.] flavum CCM 251 using a combination of the Illumina MiSeq platform and MinION technology. The genome comprised a circular chromosome of 3362281 bp with 54.13% G + C content. In this study, we present an analysis of this genome. We identified six prophage-related sequence regions; three of these regions were classified as incomplete and the three others as questionable. The prophages were classified as Caudovirales, family Siphoviridae. In silico analyses of the genome identified two complete aspartate biosynthetic pathways involved in l-lysine production, a direct variant and a succinylase variant. The complete genome sequence of [B.] flavum CCM 251 (GenBank, CP079240) was compared with the genomes of other Corynebacterial strains. We confirmed these related strains have high similarity: 98.12% homology to C. glutamicum ATCC 13032 (EMBL BA00036) and 99.98% homology to [B.] flavum ATCC 15168 and C. glutamicum BE.

Tài liệu tham khảo

Alikhan NF, Petty NK, Zakour NB, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. https://doi.org/10.1186/1471-2164-12-402 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389 Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:16–21. https://doi.org/10.1093/nar/gkw387 Brautaset T, Ellingsen TE (2011) Lysine: Industrial uses and production. Comprehensive Biotechnology 3:541–554. https://doi.org/10.1016/B978-0-08-088504-9.00220-8 Bucko M, Hano A, Revallova V, Miklas E, Hofbauer H, Sikyta B et al (1982) L-lysine-producing strain of Brevibacterium flavum ČSSR Patent No 199 775 Patent and Trademark Office. https://isdv.upv.cz/webapp/resdb.print_detail.det?pspis=PT/1978-4352&plang=EN Burkovski A (2013) Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN Microbiol. https://doi.org/10.1155/2013/935736 Carattoli A, Zankari E, Garcia-Fernandez A, Larsen MV, Lund O, Villa L et al (2014) PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother 58:7. https://doi.org/10.1128/AAC.02412-14 Eggeling L, Bott M (2005) L-lysine Production. In: Eggeling L, Bott M (eds) The Handbook of Corynebacterium glutamicum, 1st edn. Florida, Boca Raton, chapter 20 Fiedler F, Bude A (1989) Occurrence and chemistry of cell wall teichoic acids in the genus Brevibacterium. J Gen Microbiol 135:2837–2846. https://doi.org/10.1099/00221287-135-11-2837 Gunji Y, Yasueda H (2006) Enhancement of l-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. J Biotechnol 127:1–13. https://doi.org/10.1016/j.jbiotec.2006.06.003 Halgasova N, Majtan T, Ugorcakova J, Timko J, Bukovska G (2005) Resistance of corynebacterial strains to infection and lysis by corynephage BFK 20. J Applied Microbiol 98:184–192. https://doi.org/10.1111/j.1365-2672.2004.02448.x Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172. https://doi.org/10.1016/S0168-1656(03)00149-4 Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25. https://doi.org/10.1016/S0168-1656(03)00154-8 Koren S, Walemz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. https://doi.org/10.1101/gr.215087.116 Li Y, Wei H, Wang T, Xu Q, Zhang Ch, Fan X et al (2017) Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour Technol 245:1588–1602. https://doi.org/10.1016/j.biortech.2017.05.145 Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Transfer of Brevibacterium divaricatum DSM 20297T, Brevibacterium flavum “DSM 20411, „Brevibacterium lactofermentum “DSM 20412 and DSM 1412 and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol 41:255–260. https://doi.org/10.1099/00207713-41-2-255 Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3 Rodriguez-R LM and Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ [Preprints]. https://doi.org/10.7287/peerj.preprints.1900v1 Solteszova B, Halgasova N, Bukovska G (2015) Interaction between phage BFK20 helicase gp41 and its host Brevibacterium flavum primase DnaG. Virus Res 196:150–156. https://doi.org/10.1016/j.virusres.2014.11.022 Spirig T, Weiner EM, Clubb RT (2011) Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82:1044–1059. https://doi.org/10.1111/j.1365-2958.2011.07887.x Tadepally HD (2019) Recent Advances in the Industrial Production of l-Lysine by Bacteria. In: Buddolla V (ed) The Recent Developments in Applied Microbiology and Biochemistry, pp97–106. https://doi.org/10.1016/B978-0-12-816328-3.00008-8 Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569 Wu Y, Li P, Zheng P, Zhou W, Chen N, Sun J (2015) Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain. J Biotechnol 207:10–11. https://doi.org/10.1016/j.jbiotec.2015.04.018 Yang J, Yang S (2017) Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics 18:940. https://doi.org/10.1186/s12864-016-3255-4 Yang J, Kong Y, Yang S (2015) Genotyping of amino acid-producing Corynebacterium glutamicum strains based on multi-locus sequence typing (MLST) scheme. Biores Bioprocess 2:1. https://doi.org/10.1186/s40643-014-0030-8 Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:347–352. https://doi.org/10.1093/nar/gkr485