Complete genome sequence of <i>Lactobacillus plantarum</i> WCFS1

Michiel Kleerebezem1, Jos Boekhorst1, Richard van Kranenburg1, Douwe Molenaar2,1, Oscar P. Kuipers1, Rob J. Leer1, Renato Tarchini1, Sander Peters1, H. Sandbrink1, Mark Fiers1, Willem J. Stiekema1, R.M. Klein Lankhorst1, Peter A. Bron1, Sally M. Hoffer1, M.N. Nierop Groot3,1, Robert Kerkhoven1, Maaike de Vries1, Björn M. Ursing1, Willem M. de Vos1, Roland J. Siezen4,1
1Wageningen Centre for Food Sciences, P.O. Box 557, 6700 AN Wageningen, The Netherlands; Greenomics, Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands; and Center for Molecular and Biomolecular Informatics, University of Nijmegen, P.O. Box 9010, 6500GL Nijmegen, The Netherlands
2Systems Bioinformatics
3Art and Culture, History, Antiquity
4Wageningen Centre for Food Sciences, P.O. Box 557, 6700 AN Wageningen, The Netherlands

Tóm tắt

The 3,308,274-bp sequence of the chromosome of Lactobacillus plantarum strain WCFS1, a single colony isolate of strain NCIMB8826 that was originally isolated from human saliva, has been determined, and contains 3,052 predicted protein-encoding genes. Putative biological functions could be assigned to 2,120 (70%) of the predicted proteins. Consistent with the classification of L. plantarum as a facultative heterofermentative lactic acid bacterium, the genome encodes all enzymes required for the glycolysis and phosphoketolase pathways, all of which appear to belong to the class of potentially highly expressed genes in this organism, as was evident from the codon-adaptation index of individual genes. Moreover, L. plantarum encodes a large pyruvate-dissipating potential, leading to various end-products of fermentation. L. plantarum is a species that is encountered in many different environmental niches, and this flexible and adaptive behavior is reflected by the relatively large number of regulatory and transport functions, including 25 complete PTS sugar transport systems. Moreover, the chromosome encodes >200 extracellular proteins, many of which are predicted to be bound to the cell envelope. A large proportion of the genes encoding sugar transport and utilization, as well as genes encoding extracellular functions, appear to be clustered in a 600-kb region near the origin of replication. Many of these genes display deviation of nucleotide composition, consistent with a foreign origin. These findings suggest that these genes, which provide an important part of the interaction of L. plantarum with its environment, form a lifestyle adaptation region in the chromosome.

Từ khóa


Tài liệu tham khảo

M Kalliomaki, S Salminen, H Arvilommi, P Kero, P Koskinen, E Isolauri Lancet 357, 1076–1079 (2001).

M E Stiles, W H Holzapfel Int J Food Microbiol 36, 1–29 (1997).

S Ahrne, S Nobaek, B Jeppsson, I Adlerberth, A E Wold, G Molin J Appl Microbiol 85, 88–94 (1998).

D Adawi, S Ahrne, G Molin Int J Food Microbiol 70, 213–220 (2001).

S Cunningham-Rundles, S Ahrne, S Bengmark, R Johann-Liang, F Marshall, L Metakis, C Califano, A M Dunn, C Grassey, G Hinds, J Cervia Am J Gastroenterol 95, 22–25 (2000).

B Chevallier, J C Hubert, B Kammerer FEMS Microbiol Lett 120, 51–56 (1994).

S Pavan, P Hols, J Delcour, M C Geoffroy, C Grangette, M Kleerebezem, A Mercenier Appl Environ Microbiol 66, 4427–4432 (2000).

F Bringel, L Frey, J C Hubert Plasmid 22, 193–202 (1989).

P Hols, C Defrenne, T Ferain, S Derzelle, B Delplace, J Delcour J Bacteriol 179, 3804–3807 (1997).

T Ferain, J N Hobbs, J Richardson, N Bernard, D Garmyn, P Hols, N E Allen, J Delcour J Bacteriol 178, 5431–5437 (1996).

P H Pouwels, R J Leer, M Shaw, M J Heijne den Bak-Glashouwer, F D Tielen, E Smit, B Martinez, J Jore, P L Conway Int J Food Microbiol 41, 155–167 (1998).

A C Hayward, G H G Davis Br Dent J 101, 43 (1956).

T Vesa, P Pochart, P Marteau Aliment Pharmacol Ther 14, 823–828 (2000).

R D Fleischmann, M D Adams, O White, R A Clayton, E F Kirkness, A R Kerlavage, C J Bult, J F Tomb, B A Dougherty, J M Merrick, et al. Science 269, 496–512 (1995).

P D Karp, M Riley, S M Paley, A Pellegrini-Toole, M Krummenacker Nucleic Acids Res 27, 55–58 (1999).

F Kunst, N Ogasawara, I Moszer, A M Albertini, G Alloni, V Azevedo, M G Bertero, P Bessieres, A Bolotin, S Borchert, et al. Nature 390, 249–256 (1997).

H Takami, K Nakasone, Y Takaki, G Maeno, R Sasaki, N Masui, F Fuji, C Hirama, Y Nakamura, N Ogasawara, et al. Nucleic Acids Res 28, 4317–4331 (2000).

H Yoshikawa, N Ogasawara Mol Microbiol 5, 2589–2597 (1991).

T M Hill Escherichia coli and Salmonella: Cellular and Molecular Biology, ed F C Neidhardt (Am. Soc. Microbiol., Washington, DC), pp. 1602–1615 (1996).

E Johansen, A Kibenich Plasmid 27, 200–206 (1992).

T Ito, Y Katayama, K Asada, N Mori, K Tsutsumimoto, C Tiensasitorn, K Hiramatsu Antimicrob Agents Chemother 45, 1323–1336 (2001).

P Glaser, L Frangeul, C Buchrieser, C Rusniok, A Amend, F Baquero, P Berche, H Bloecker, P Brandt, T Chakraborty, et al. Science 294, 849–852 (2001).

S Karlin, J Mrazek, A Campbell, D Kaiser J Bacteriol 183, 5025–5040 (2001).

D Ajdic, W M McShan, R E McLaughlin, G Savic, J Chang, M B Carson, C Primaeaux, R Tian, S Kenton, H Jia, et al. Proc Natl Acad Sci USA 99, 14434–14439 (2002).

O Kandler Antonie Van Leeuwenhoek 49, 209–224 (1983).

A Bolotin, P Wincker, S Mauger, O Jaillon, K Malarme, J Weissenbach, S D Ehrlich, A Sorokin Genome Res 11, 731–753 (2001).

T Ferain, A N Schanck, J Delcour J Bacteriol 178, 7311–7315 (1996).

E R Kunji, I Mierau, A Hagting, B Poolman, W N Konings Antonie Leeuwenhoek 70, 187–221 (1996).

J E Christensen, E G Dudley, J A Pederson, J L Steele Antonie Leeuwenhoek 76, 217–246 (1999).

M A Marahiel, T Stachelhaus, H D Mootz Chem Rev 97, 2651–2674 (1997).

R Van Montfort, C Slingsby, E Vierling Adv Protein Chem 59, 105–156 (2001).

S Derzelle, B Hallet, K P Francis, T Ferain, J Delcour, P Hols J Bacteriol 182, 5105–5113 (2000).

P D Cotter, C G Gahan, C Hill Mol Microbiol 40, 465–475 (2001).

M Kuroda, T Ohta, H Hayashi Biochem Biophys Res Commun 207, 978–984 (1995).

E Glaasker, F S Tjan, P F Ter Steeg, W N Konings, B Poolman J Bacteriol 180, 4718–4723 (1998).

F S Archibald, I Fridovich J Bacteriol 145, 442–451 (1981).

Z Hao, S Chen, D B Wilson Appl Environ Microbiol 65, 4746–4752 (1999).

P A Scotti, M L Urbanus, J Brunner, J W de Gier, G von Heijne, C van der Does, A J Driessen, B Oudega, J Luirink EMBO J 19, 542–549 (2000).

M Kuroda, T Ohta, I Uchiyama, T Baba, H Yuzawa, I Kobayashi, L Cui, A Oguchi, K Aoki, Y Nagai, et al. Lancet 357, 1225–1240 (2001).

H Tettelin, K E Nelson, I T Paulsen, J A Eisen, T D Read, S Peterson, J Heidelberg, R T DeBoy, D H Haft, R J Dodson, et al. Science 293, 498–506 (2001).

E Josefsson, K W McCrea, D Ni Eidhin, D O'Connell, J Cox, M Hook, T J Foster Microbiology 144, 3387–3395 (1998).

K W McCrea, O Hartford, S Davis, D N Eidhin, G Lina, P Speziale, T J Foster, M Hook Microbiology 146, 1535–1546 (2000).

B A Bensing, P M Sullam Mol Microbiol 44, 1081–1094 (2002).

F Desiere, R D Pridmore, H Brussow Virology 275, 294–305 (2000).

D Dubnau, C M Lovett Bacillus subtilis and Its Closest Relatives: From Genes to Cells, eds A L Sonenshein, J A Hoch, R Losick (Am. Soc. Microbiol., Washington, DC), pp. 453–471 (2002).

E E Vaughan, S David, W M de Vos Appl Environ Microbiol 62, 1574–1582 (1996).

A Bock, K Forchhammer, J Heider, C Baron Trends Biochem Sci 16, 463–467 (1991).

V N Gladyshev, G V Kryukov Biofactors 14, 87–92 (2001).