Complete genome sequence of Thioalkalivibrio “sulfidophilus” HL-EbGr7

Standards in Genomic Sciences - Tập 4 Số 1 - Trang 23-35
Gerard Muyzer1, Dimitry Y. Sorokin2, Konstantinos Mavromatis3, Alla Lapidus3, Alicia Clum3, Natalia Ivanova3, Amrita Pati3, Patrick d'Haeseleer4, Tanja Woyke3, Nikos C. Kyrpides3
11Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
22Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
33Joint Genome Institute, Walnut Creek, California, USA
44Joint Bioenergy Institute, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sorokin, 2005, Haloalkaliphilic sulfur-oxidizing bacteria from soda lakes., FEMS Microbiol Rev, 29, 685, 10.1016/j.femsre.2004.10.005

Sorokin, 2008, Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors., Appl Microbiol Biotechnol, 80, 965, 10.1007/s00253-008-1598-8

Field, 2008, The minimum information about a genome sequence (MIGS) specification., Nat Biotechnol, 26, 541, 10.1038/nbt1360

Woese, 1990, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya., Proc Natl Acad Sci USA, 87, 4576, 10.1073/pnas.87.12.4576

List Editor, 2005, Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 106., Int J Syst Evol Microbiol, 55, 2235, 10.1099/ijs.0.64108-0

Imhoff, 1984, Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924., Int J Syst Bacteriol, 34, 338, 10.1099/00207713-34-3-338

Sorokin, 2001, Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes., Int J Syst Evol Microbiol, 51, 565, 10.1099/00207713-51-2-565

Banciu, 2004, Thioalkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake., Extremophiles, 8, 325, 10.1007/s00792-004-0391-6

List Editor, 2001, Notification that new names and new combinations have appeared in volume 51, part 2, of the IJSEM., Int J Syst Evol Microbiol, 51, 795, 10.1099/00207713-51-3-795

Classification of. Bacteria and Archaea in risk groups. www.baua.de TRBA 466.

Foti, 2006, Genetic diversity and biogeography of haloalkaliphilic sulfur-oxidizing bacteria beloning to the genus Thioalkalivibrio., FEMS Microbiol Ecol, 56, 95, 10.1111/j.1574-6941.2006.00068.x

http://www.iTouchMap.com

Sorokin, 2001, Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulfur-oxidizing bacterium “Thioalkalivibrio denitrificans”., Arch Microbiol, 175, 94, 10.1007/s002030000210

Sorokin, 2003, Complete denitrification in a coculture of haloalkaliphilic sulfur-oxidizing bacteria from a soda lake., Arch Microbiol, 180, 127, 10.1007/s00203-003-0567-y

Sorokin, 2001, Microbial thiocyanate utilization under high alkaline conditions., Appl Environ Microbiol, 67, 528, 10.1128/AEM.67.2.528-538.2001

Sorokin, 2004, Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate., Microbiology, 150, 2435, 10.1099/mic.0.27015-0

Janssen, 2009, Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification., Sci Total Environ, 407, 1333, 10.1016/j.scitotenv.2008.09.054

Nelson, 1983, Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures., Arch Microbiol, 136, 262, 10.1007/BF00425214

Pruesse, 2007, SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB., Nucleic Acids Res, 35, 7188, 10.1093/nar/gkm864

Ludwig, 2004, ARB: a software environment for sequence data., Nucleic Acids Res, 32, 1363, 10.1093/nar/gkh293

Liolios, 2010, The Genomes OnLine Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata., Nucleic Acids Res, 38, D346, 10.1093/nar/gkp848

DOE Joint Genome Institute. http://www.jgi.doe.gov/

Hyatt, 2010, Prodigal: prokaryotic gene recognition and translation initiation site identification., BMC Bioinformatics, 11, 119, 10.1186/1471-2105-11-119

Pati, 2010, GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes., Nat Methods, 7, 455, 10.1038/nmeth.1457

Markowitz, 2008, The integrated microbial genomes (IMG) system in 2007: data content and analysis tools extensions., Nucleic Acids Res, 36, D528, 10.1093/nar/gkm846

Shibata, 2002, Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis., J Biol Chem, 277, 18658, 10.1074/jbc.M112468200

Dobrinski, 2005, The carbon-concentrating mechanism of the hydrothermal vent chemolithoautotroph Thiomicrospira crunogena., J Bacteriol, 187, 5761, 10.1128/JB.187.16.5761-5766.2005

Yeates, 2008, Protein-based organelles in bacteria: carboxysomes and related microcompartments., Nat Rev Microbiol, 6, 681, 10.1038/nrmicro1913

Tourova, 2007, Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH genes., Int J Syst Evol Microbiol, 57, 2387, 10.1099/ijs.0.65041-0

Yoshizawa, 2004, CO2-responsive expression and gene organization of three ribulose-1,5-biphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110., J Bacteriol, 186, 5685, 10.1128/JB.186.17.5685-5691.2004

Frigaard, 2009, Sulfur metabolism in phototrophic sulfur bacteria., Adv Microb Physiol, 54, 103, 10.1016/S0065-2911(08)00002-7

Quatrini, 2009, Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans., BMC Genomics, 10, 394, 10.1186/1471-2164-10-394

Kappler, 2011, Bacterial sulfite-oxidizing enzymes., Biochim Biophys Acta, 1807, 1, 10.1016/j.bbabio.2010.09.004

Padan, 2005, Alkaline pH homeostasis in bacteria: New insights., Biochim Biophys Acta, 1717, 67, 10.1016/j.bbamem.2005.09.010

Hicks, 2010, F1F0-ATP synthases of alkaliphilic bacteria: Lessons from their adaptations., Biochim Biophys Acta, 1797, 1362, 10.1016/j.bbabio.2010.02.028

Verkhovsky, 2010, Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump., Biochim Biophys Acta, 1797, 738, 10.1016/j.bbabio.2009.12.020

Tokuda, 1981, A respiratory-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus., Biochem Biophys Res Commun, 102, 265, 10.1016/0006-291X(81)91516-3

Takada, 1988, Respiration-dependent proton and sodium pumps in a psychrophilic bacterium, Vibrio sp. strain ABE-1., Plant Cell Physiol, 29, 207

Banciu, 2005, Fatty acid, compatible solute and pigment composition of the obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes., FEMS Microbiol Lett, 243, 181, 10.1016/j.femsle.2004.12.004

Haines, 2002, Cardiolipin: a proton trap for oxidative phosphorylation., FEBS Lett, 528, 35, 10.1016/S0014-5793(02)03292-1

Hauß, 2002, Squalene is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier., Biochim Biophys Acta, 1556, 149, 10.1016/S0005-2728(02)00346-8

Boch, 1996, Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: Characterization of the gbsAB genes., J Bacteriol, 178, 5121, 10.1128/jb.178.17.5121-5129.1996

Lai, 1999, Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis., Appl Environ Microbiol, 65, 828, 10.1128/AEM.65.2.828-833.1999