Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOBT)
Tóm tắt
Syntrophobacter fumaroxidans strain MPOBT is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project.
Tài liệu tham khảo
Harmsen HJM, VanKuijk BLM, Plugge CM, Akkermans ADL, DeVos WM, Stams AJM. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 1998; 48:1383–1387. PubMed http://dx.doi.org/10.1099/00207713-48-4-1383
McInerney MJ, Stams AJM, Boone DR. Genus Syntrophobacter. In: Staley JT, Boone DR, Brenner DJ, de Vos P, Garrity GM, Goodfellow M, Krieg NR, Rainey, FA, Schleifer KH (eds) Bergey’s Manual of Systematic Bacteriology, second edition, vol 2 2005; Springer, NY, pp 1021–1027.
Boone DR, Bryant MP. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov., gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 1980; 40:626–632. PubMed
McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus R. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 2008; 1125:58–72. PubMed http://dx.doi.org/10.1196/annals.1419.005
Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A Harada H. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 2002; 52:1729–1735. PubMed http://dx.doi.org/10.1099/ijs.0.02212-0
Plugge CM, Balk M, Stams AJM. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic syntrophic propionate-oxidizing spore-forming bacterium. Int J Syst Evol Microbiol 2002; 52:391–399. PubMed
de Bok FAM, Harmsen HJM, Plugge CM, deVries MC, Akkermans ADL, de Vos WM, Stams AJM. The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured withMethanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 2005; 55:1697–1703. PubMed http://dx.doi.org/10.1099/ijs.0.02880-0
Plugge CM, Zhang W, Scholten JCM, Stams AJM. Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2011; 2:81. PubMed
Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 1999; 49:545–556. PubMed http://dx.doi.org/10.1099/00207713-49-2-545
De Bok FAM, Stams AJM, Dijkema C, Boone DR. Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 2001; 67:1800–1804. PubMed http://dx.doi.org/10.1128/AEM.67.4.1800-1804.2001
Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541–547. PubMed http://dx.doi.org/10.1038/nbt1360
Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domainsArchaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576
Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyl. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.
Validation List no. 107. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006; 56:1–6. PubMed http://dx.doi.org/10.1099/ijs.0.64188-0
Kuever J, Rainey FA, Widdel F. Class IV. Deltaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 922.
Kuever J, Rainey FA, Widdel F. Order VI. Syntrophobacterales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 1021.
Kuever J, Rainey FA, Widdel F. Family I. Syntrophobacteraceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 1021.
Validation List no. 15. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 1984; 34:355–357. http://dx.doi.org/10.1099/00207713-34-3-355
Chen S, Liu X, Dong X. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 2005; 55:1319–1324. PubMed http://dx.doi.org/10.1099/ijs.0.63565-0
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29. PubMed http://dx.doi.org/10.1038/75556
Plugge CM, Dijkema C, Stams AJM. Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 1993; 110:71–76. http://dx.doi.org/10.1111/j.1574-6968.1993.tb06297.x
Van Kuijk BLM, Stams AJM. Sulfate reduction by a syntrophic propionate-oxidizing bacterium. Antonie van Leeuwenhoek 1995; 68:293–296. PubMed http://dx.doi.org/10.1007/BF00874139
Stams AJM, vanDijk JB, Dijkema C, Plugge CM. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 1993; 59:1114–1119. PubMed
Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2012; 40:D571–D579. PubMed http://dx.doi.org/10.1093/nar/gkr1100
Stams AJM, Plugge CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 2009; 7:568–577. PubMed http://dx.doi.org/10.1038/nrmicro2166
Loy A, Küsel K, Lehner A, Drake HL, Wagner M. Microarray and functional gene analyses of sulfate-reducing prokaryotes in low sulfate, acidic fens reveal co-occurence of recognized genera and novel lineages. Appl Environ Microbiol 2004; 70:6998–7009. PubMed http://dx.doi.org/10.1128/AEM.70.12.6998-7009.2004
Lueders T, Pommerenke B, Friedrich MW. Stable-Isotope Probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 2004; 70:5778–5786. PubMed http://dx.doi.org/10.1128/AEM.70.10.5778-5786.2004
Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu YL, Hugenholtz P, Kimura N, Wagner M, Ohashi A, Harada H. Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum Cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 2006; 72:2080–2091. PubMed http://dx.doi.org/10.1128/AEM.72.3.2080-2091.2006
Wallrabenstein C, Hauschild E, Schink B. Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 1995; 164:346–352. http://dx.doi.org/10.1007/BF02529981
Chen SY, Liu XL, Dong XZ. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 2005; 55:1319–1324. PubMed http://dx.doi.org/10.1099/ijs.0.63565-0
Syntrophobacter fumaroxidans taxon id. http://img.jgi.doe.gov/cgi-bin/w/main.cgi?page=taxon Detail&taxon oid=63 9633063
DOE Joint Genome Institute. http://www.jgi.doe.gov
Phred/Phrap/Consed software package. http://www.phrap.org
Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998; 8:186–194. PubMed
Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8:175–185. PubMed
Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res 1998; 8:195–202. PubMed
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999a; 27:4636–4641. PubMed http://dx.doi.org/10.1093/nar/27.23.4636
Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. Alignment of whole genomes. Nucleic Acids Res 1999b; 27:2369–2376. PubMed http://dx.doi.org/10.1093/nar/27.11.2369
Badger JH, Olsen GJ. CRITICA: coding region identification tool invoking comparative analysis. Mol Biol Evol 1999; 16:512–524. PubMed http://dx.doi.org/10.1093/oxfordjournals.molbev.a 026133
Markowitz VM, Mavromatis K, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271–2278. PubMed http://dx.doi.org/10.1093/bioinformatics/btp393
von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 2005; 33:D433–D437. PubMed http://dx.doi.org/10.1093/nar/gki005
STRING. http://string.embl.de/.
Scholten JCM, Culley DE, Brockman FJ, Wu G, Zhang W. Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: Involvement of an ancient horizontal gene transfer. Biochem Biophys Res Commun 2007; 352:48–54. PubMed http://dx.doi.org/10.1016/j.bbrc.2006.10.164
Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 1997; 61:262–280. PubMed
Lancaster CRD. Succinate:quinone oxidoreductases: an overview. Biochim Biophys Acta 2002; 1553:1–6. PubMed http://dx.doi.org/10.1016/S0005-2728(01)00240-7
Lemos RS, Fernandes AS, Pereira MM, Gomes CM, Teixeira M. Quinol:fumarate oxidoreductases and succinate:quinone oxidoreductases: phylogenetic relationships, metal centers and membrane attachment. Biochim Biophys Acta 2002; 1553:158–170. PubMed http://dx.doi.org/10.1016/S0005-2728(01)00239-0
Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 2004; 22:554–559. PubMed http://dx.doi.org/10.1038/nbt959
Schut GJ, Adams MW. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 2009; 191:4451–4457. PubMed http://dx.doi.org/10.1128/JB.01582-08
Pereira IA, Ramos AR, Grein F, Marques MC, Marques da Silva M, Venceslau SS. A comparative genome analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2011; 2:69. PubMed
Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 2006; 103:11358–11363. PubMed http://dx.doi.org/10.1073/pnas.0604517103
Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, et al. Evolution and classification of the CRISPR-Cas systems. Nat Microbiol Rev 2011; 9:467–477. PubMed http://dx.doi.org/10.1038/nrmicro2577