Complete genome sequence of Staphylococcus aureus, strain ILRI_Eymole1/1, isolated from a Kenyan dromedary camel

Saima Zubair1, Anne Fischer2,3, Anne Liljander3, Jochen Meens4, Jan Hegerman5,6,7, Hadrien Gourlé1, Richard P. Bishop3, Ina Roebbelen3, Mario Younan8, Mudassir Imran Mustafa9, Muhammad Mushtaq1, Erik Bongcam‐Rudloff1, Joerg Jores3
1Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
2International Center for Insect Physiology and Ecology, PO Box 30722, Nairobi, Kenya.
3International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
4Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
5Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
6Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
7REBIRTH Cluster of Excellence, Hannover, Germany
8Vétérinaires sans Frontières Germany, Nairobi, Kenya.
9Department of Public Health and Caring Science, Uppsala University, 751 22 Uppsala, Sweden.

Tóm tắt

AbstractWe report the genome of a Staphylococcus aureus strain (ILRI_Eymole1/1) isolated from a nasal swab of a dromedary camel (Camelus dromedarius) in North Kenya. The complete genome sequence of this strain consists of a circular chromosome of 2,874,302 bp with a GC-content of 32.88 %. In silico annotation predicted 2755 protein-encoding genes and 76 non-coding genes. This isolate belongs to MLST sequence type 30 (ST30). Phylogenetic analysis based on a subset of 283 core genes revealed that it falls within the human clonal complex 30 (CC30) S. aureus isolate cluster but is genetically distinct. About 79 % of the protein encoding genes are part of the CC30 core genome (genes common to all CC30 S. aureus isolates), ~18 % were within the variable genome (shared among multiple but not all isolates) and ~ 3 % were found only in the genome of the camel isolate. Among the 85 isolate-specific genes, 79 were located within putative phages and pathogenicity islands. Protein encoding genes associated with bacterial adhesion, and secretory proteins that are essential components of the type VII secretion system were also identified. The complete genome sequence of S. aureus strain ILRI_Eymole1/1 has been deposited in the European Nucleotide Archive under the accession no LN626917.1.

Từ khóa


Tài liệu tham khảo

Sung JM-L, Lloyd DH, Lindsay JA. Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology. 2008;154:1949–59.

Smyth DS, Feil EJ, Meaney WJ, Hartigan PJ, Tollersrud T, Fitzgerald JR, et al. Molecular genetic typing reveals further insights into the diversity of animal-associated Staphylococcus aureus. J Med Microbiol. 2009;58:1343–53.

Wertheim HFL, Melles DC, Vos MC, Van Leeuwen W, Van Belkum A, Verbrugh HA, et al. Subscription Information: Review The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5:751–62.

Maina EK, Kiiyukia C, Wamae CN, Waiyaki PG, Kariuki S. Characterization of methicillin-resistant Staphylococcus aureus from skin and soft tissue infections in patients in Nairobi, Kenya. Int J Infect Dis. 2013;17:e115–9.

Ladhani S. Bacteraemia due to Staphylococcus aureus. Arch Dis Child. 2004;89:568–71.

Fitzgerald JR. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 2012;20:192–8.

Guinane CM, Ben Zakour NL, Tormo-Mas MA, Weinert LA, Lowder BV, Cartwright RA, et al. Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol Evol. 2010;2:454–66.

Christou L. The global burden of bacterial and viral zoonotic infections. Clin Microbiol Infect. 2011;17:326–30.

Petersen A, Stegger M, Heltberg O, Christensen J, Zeuthen A, Knudsen L, et al. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin Microbiol Infect. 2013;19:E16–22.

Abdurahman OAS. Udder health and milk quality among camels in the Errer valley of eastern Ethiopia. In: Livestock Research for Rural Development, vol. 18. 2006. p. 8.

Gautret P, Benkouiten S, Gaillard C, Parola P, Brouqui P. Camel milk-associated infection risk perception and knowledge in French Hajj pilgrims. Vector Borne Zoonotic Dis. 2013;13:425–7.

Sprague LD, Al-Dahouk S, Neubauer H. A review on camel brucellosis: a zoonosis sustained by ignorance and indifference. Pathog Glob Health. 2012;106:144–9.

Fischer A, Liljander A, Kaspar H, Muriuki C, Fuxelius H-H, Bongcam-Rudloff E, et al. Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element. Vet Res. 2013;44:86.

Monecke S, Ehricht R, Slickers P, Wernery R, Johnson B, Jose S, et al. Microarray-based genotyping of Staphylococcus aureus isolates from camels. Vet Microbiol. 2011;150:309–14.

Younan M, Bornstein S. Papers & Articles Lancefield group B and C streptococci in East African camels (Camelus dromedarius). Vet Rec. 2007;160:330–5.

Younan M, Ali Z, Bornstein S, Müller W. Application of the California mastitis test in intramammary Streptococcus agalactiae and Staphylococcus aureus infections of camels (Camelus dromedarius) in Kenya. Prev Vet Med. 2001;51:307–16.

Wernery U, Kinne J, Schuster RK. Camelid Infectious Disorders. Paris, France: World Organisation for Animal Health OIE; 2014. p. 500.

Carter GRCJ. Diagnostic procedures in veterinary bacteriology and mycology. 5th ed. San Diego, Calif: Academic; 1990. p. 620.

Hussain M, Von Eiff C, Sinha B, Joost I, Herrmann M, Peters G, et al. eap Gene as Novel Target for Specific Identification of Staphylococcus aureus. J Clin Microbiol. 2008;46:470–6.

Enright MC, Day NPJ, Davies CE, Peacock SJ. Multilocus sequence typing for characterization of methicillin- resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38:1008–15.

Altschul SF, Gish W, Miller W, Myers EW, Lipmanl DJ. Basic Local Alignment Search Tool. J Mol Biol. 1990;215:403–10.

Chevreux B, Wetter T, Suhai S. Genome sequence assembly using trace signals and additional sequence information. In: Computer science and biology: proceedings of the German Conference on Bioinformatics, vol. 99. Göttingen, Germany: GCB; 1999. p. 45–56.

Darling AE, Mau B, Perna NT. Progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5:e11147.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12.

Holden MTG, Feil EJ, Lindsay JA, Peacock SJ, Day NPJ, Enright MC, et al. Complete genomes of two clinical Staphylococcus aureus strains : Evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A. 2004;101:9786–91.

Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, et al. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 2013;14:193–202.

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75–89.

Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res. 1997;25:955–64.

Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.

BLAST+ executables. ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/.

Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.

Von Heijne G. Membrane hydrophobicity protein structure prediction analysis and the positive-inside. J Mol Biol. 1992;225:487–94.

Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: A Fast Phage Search Tool. Nucl Acids Res. 2011;39:W347–52.

NCBI FTP site. https://www.ncbi.nlm.nih.gov/Ftp/.

McGavin MJ, Arsic B, Nickerson NN. Evolutionary blueprint for host- and niche-adaptation in Staphylococcus aureus clonal complex CC30. Front Cell Infect Microbiol. 2012;2:1–13.

Harro JM, Daugherty S, Bruno VM, Jabra-rizk MA, Rasko DA, Shirtliff E. Draft Genome Sequence of the Methicillin-Resistant Staphylococcus aureus Isolate MRSA-M2. Genome Announc. 2013;1:e00037–12.

Corrigan RM, Miajlovic H, Foster TJ. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol. 2009;9:22.

Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kun JF, Mond JJ, et al. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe. 2007;1:199–212.

Sinha B, Francois P, Que Y-A, Hussain M, Heilmann C, Moreillon P, et al. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect Immun. 2000;68:6871–8.

Haggar A, Hussain M, Lo H, Herrmann M, Norrby-teglund A, Flock J. Extracellular Adherence Protein from Staphylococcus aureus Enhances Internalization into Eukaryotic Cells. Infect Immun. 2003;71:2310–7.

Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A. 2005;102:1169–74.

Anderson M, Chen Y-H, Butler EK, Missiakas DM. EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J Bacteriol. 2011;193:1583–9.

Ubeda C, Maiques E, Barry P, Matthews A, Tormo MA, Lasa I, et al. SaPI mutations affecting replication and transfer and enabling autonomous replication in the absence of helper phage. Mol Microbiol. 2008;67:493–503.

Sato’o Y, Omoe K, Ono HK, Nakane A, Hu D-L. A novel comprehensive analysis method for Staphylococcus aureus pathogenicity islands. Microbiol Immunol. 2013;57:91–9.

Holtfreter S, Grumann D, Schmudde M, Nguyen HTT, Eichler P, Strommenger B, et al. Clonal distribution of superantigen genes in clinical Staphylococcus aureus isolates. J Clin Microbiol. 2007;45:2669–80.

Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics. 2011;27:334–42.

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704.

Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.

Gibbons NE, Murray RGE. Proposals Concerning the Higher Taxa of Bacteria. Int J Syst Bacteriol 1978;1:1–6

Schleifer K-H. Phylum XIII. Firmicutes. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH WW, editors. Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 3. New York: Springer; 2009. p. 19.

Ludwig W, Schleifer K-H, Whitman WB. Class I. Bacilli class nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH WW, editors. Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 3. Springer-Verlag, New York; 2009. p. 19–20

Anon. List of new names and new combinations previously effectively, but not validly, published. List no. 132. Int J Syst Evol Microbiol. 2010;60:469–72.

De Vos P. Order I. Bacillales Prévot 1953, 60AL. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH WW, editors. Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 3. Springer-Verlag, New York; 2009. p. 20.

Yakoubou S, Xu D, Côté J. Phylogeny of the Order Bacillales inferred from 3′ 16S rDNA and 5′ 16S-23S ITS nucleotide sequences. Nat Sci. 2010;2:990–7.

Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:225–420.

Prévot AR. Dictionnaire des Bactéries Pathogènes. 2nd ed. In: Hauderoy P, Ehringer G, Guillot G, J. M, Prévot AR, Rosset D, Urbain A, editors. Paris: Masson et Cie; 1953. p. 1–692.

Schleifer K-H, Bell JA. Family VIII. Staphylococcaceae fam. nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH WW, editors. Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 3. Springer-Verlag, New York; 2009. p. 392.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biologybiology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics. 2009;25:119–20. 

Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic acids research 43, no. D1 (2015): D1049-D1056. http://www.geneontology.org

Tamura, Koichiro, Glen Stecher, Daniel Peterson, Alan Filipski, Sudhir Kumar. "MEGA6: molecular evolutionary genetics analysis version 6.0."Molecular biology and evolution 30, no. 12 (2013): 2725-729.

Carver, Tim, Nick Thomson, Alan Bleasby, Matthew Berriman, and Julian Parkhill. "DNAPlotter: circular and linear interactive genome visualization."Bioinformatics 25, no. 1 (2009): 119-20.