Chuỗi gen hoàn chỉnh của Salmonella enterica phân loài arizonae chủng RKS2983

Standards in Genomic Sciences - Tập 10 - Trang 1-7 - 2015
Chun-Xiao Wang1, Song-Ling Zhu1, Xiao-Yu Wang1, Ye Feng2, Bailiang Li1, Yong-Guo Li3, Randal N Johnston4, Gui-Rong Liu1, Jin Zhou5, Shu-Lin Liu1,3,6
1Genomics Research Center, Harbin Medical University, Harbin, China
2Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
3Department of Infectious Diseases, The First Affiliated Hospital, Harbin Medical University, Harbin, China
4Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
5Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
6Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada

Tóm tắt

Salmonella arizonae (còn được gọi là Salmonella nhánh IIIa) là một vi khuẩn Gram âm, không hình thành bào tử, có khả năng di động, có hình dạng que và ký sinh thiếu khí. Chủng S. arizonae RKS2983 đã được phân lập từ một người ở California, Hoa Kỳ. S. arizonae nằm ở giữa hai nhánh Salmonella I (mầm bệnh ở người) và V (còn được gọi là S. bongori; thường không gây bệnh cho con người) và do đó là một mô hình lý tưởng cho các nghiên cứu về sự tiến hóa vi khuẩn từ mầm bệnh không người sang mầm bệnh ở người. Do đó, chúng tôi đã tiến hành giải mã gen của RKS2983 để tìm kiếm những manh mối về các sự kiện di truyền có thể đã dẫn đến sự phân kỳ và đặc trưng hóa của Salmonella thành các dòng khác nhau với phạm vi ký chủ đa dạng và các đặc điểm gây bệnh khác nhau. Bộ gen hoàn chỉnh dài 4,574,836 bp chứa 4,203 gen mã hóa protein, 82 gen tRNA và 7 operon rRNA. Bộ gen này chứa một số đặc điểm chưa được báo cáo đến nay trong nhánh Salmonella I hoặc V và có thể cung cấp thông tin về sự phân kỳ di truyền của các mầm bệnh Salmonella.

Từ khóa

#Salmonella arizonae #giải mã gen #mầm bệnh #tiến hóa vi khuẩn #đặc trưng sinh chất di truyền.

Tài liệu tham khảo

Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol. 2000;38(7):2465–7. Boyd EF, Wang FS, Whittam TS, Selander RK. Molecular genetic relationships of the salmonellae. Appl Environ Microbiol. 1996;62(3):804–8. Tang L, Wang CX, Zhu SL, Li Y, Deng X, Johnston RN, et al. Genetic boundaries to delineate the typhoid agent and other Salmonella serotypes into distinct natural lineages. Genomics. 2013;102(4):331–7. Tang L, Li Y, Deng X, Johnston RN, Liu GR, Liu SL. Defining natural species of bacteria: clear-cut genomic boundaries revealed by a turning point in nucleotide sequence divergence. BMC Genomics. 2013;14:489. Tang L, Liu SL. The 3Cs provide a novel concept of bacterial species: messages from the genome as illustrated by Salmonella. Antonie Van Leeuwenhoek. 2012;101(1):67–72. Baumler AJ, Tsolis RM, Ficht TA, Adams LG. Evolution of host adaptation in Salmonella entswerica. Infect Immun. 1998;66(10):4579–87. Doolittle RF, Feng DF, Tsang S, Cho G, Little E. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science (New York, NY). 1996;271(5248):470–7. Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A. 1998;95(16):9413–7. Porwollik S, McClelland M. Lateral gene transfer in Salmonella. Microbes and infection / Institut Pasteur. 2003;5(11):977–89. Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med. 1994;180(1):15–23. McCormick BA, Miller SI, Carnes D, Madara JL. Transepithelial signaling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis. Infect Immun. 1995;63(6):2302–9. Schmidt H, Hensel M. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev. 2004;17(1):14–56. Ochman H, Groisman EA. Distribution of pathogenicity islands in Salmonella spp. Infect Immun. 1996;64(12):5410–2. Hensel M, Shea JE, Baumler AJ, Gleeson C, Blattner F, Holden DW. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol. 1997;179(4):1105–11. Hensel M, Shea JE, Waterman SR, Mundy R, Nikolaus T, Banks G, et al. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol. 1998;30(1):163–74. Cirillo DM, Valdivia RH, Monack DM, Falkow S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol. 1998;30(1):175–88. Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C, Connor TR, et al. Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathogens. 2011;7(8):e1002191. Ochman H, Soncini FC, Solomon F, Groisman EA. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A. 1996;93(15):7800–4. Crosa JH, Brenner DJ, Ewing WH, Falkow S. Molecular relationships among the Salmonelleae. J Bacteriol. 1973;115(1):307–15. SGSC web site. [www.ucalgary.ca/~kesander] Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26(5):541–7. Doyle JDJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5. Illumina web site. [http://www.illumina.com/technology/sequencing_technology.ilmn] Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics (Oxford, England). 2007;23(6):673–9. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413(6858):852–6. Desai PT, Porwollik S, Long F, Cheng P, Wollam A, Bhonagiri-Palsikar V, Hallsworth-Pepin K, Clifton SW, Weinstock GM, McClelland M: Evolutionary Genomics of Salmonella enterica Subspecies. mBio.2013;4(2):e00198-13. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31(1):439–41. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596–9. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87(12):4576–9. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyL. In Bergey’s manual of systematic bacteriology, volume 2, part B. 2nd ed. New York: Springer; 2005:1. Garrity GM, Bell JA, Lilburn T. Class III. Gammaproteobacteria class.In Bergey’s manual of systematic bacteriology, volume 2, part B. 2nd ed. New York: Springer; 2005:1. Garrity GM, Holt JG. Taxonomic outline of the archaea and bacteria. In Bergey’s manual of systematic bacteriology, volume 1. 2nd ed. New York: Springer; 2001. p. 155–66. Rahn O. New principles for the classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1937;96:273–86. Commission J. Conservation of the family name Enterobacteriaceae, of the name of the type genus, and designation of the type species Opinion No. 15. Int Bull Bacteriol Nomencl Taxon. 1958;8:74. Goullet P. Esterase electrophoretic pattern relatedness between Shigella species and Escherichia coli. J Gen Microbiol. 1980;117:493–500. Tindall BJ, Grimont PA, Garrity GM, Euzeby JP. Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol. 2005;55(Pt 1):521–4. Le Minor L, Popoff MY. Request for an opinion. Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella. Int J Syst Bacteriol. 1987;37:465–8. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–9.