Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis

Nature Biotechnology - Tập 21 Số 5 - Trang 526-531 - 2003
Haruo Ikeda1, Jun Ishikawa2, Akiharu Hanamoto3, MAYUMI SHINOSE3, Hisashi Kikuchi4, Tadayoshi Shiba5, Yoshiyuki Sakaki6, Masahira Hattori7, Satoshi Ōmura8
1Kitasato Institute for Life Sciences, Kitasato University, Kanagawa, 228-8555, Japan
2National Institute of Infectious Diseases, Tokyo 162-8640, Japan
3The Kitasato Institute, Tokyo 108-8642, Japan
4National Institute of Technology and Evaluation, Tokyo, 151-0066, Japan
5School of Science, Kitasato University, Kanagawa, 228-8555, Japan
6Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
7RIKEN Yokohama Institute, Genomic Sciences Center, Kanagawa, 230-0045, Japan
8Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Burg, R.W. et al. Avermectins, new family of potent antihelminthic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15, 361–367 (1979).

Witt, D. & Stackebrandt, E. Unification of the genera Streptoverticillium and Streptomyces, and amendation of Streptomyces Waksman and Henrici 1943, 339AL. System. Appl. Microbiol. 13, 361–371 (1990).

Lin, Y.-S., Kieser, H.M., Hopwood, D.A. & Chen, C.W. The chromosomal DNA of Streptomyces lividans 66 is linear. Mol. Microbiol. 10, 923–933 (1993).

Fraser, C.M. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 (1997).

Wood, D.W. et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317–2323 (2001).

Goodner, B. et al. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323–2328 (2001).

Demain, A.L. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52, 455–463 (1999).

Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

Fleischmann, R.D. et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184, 5479–5490 (2002).

Cole, S.T. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001).

Mizoguchi, H. et al. Novel polynucleotides. European Patent Application, EP1108790 (2001).

Bentley, S.D. et al. Complete genome sequence of model of actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

Fleischmann, R.D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

Kaneko, T. et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7, 331–338 (2000).

Jakimowicz, D.M. et al. Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein. Microbiol. 144, 1281–1290 (1998).

White, O. et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577 (1999).

Huang, C.-H., Lin, Y.-S., Yang, Y.-L., Huang, S.-W. & Chen, C.W. The telomeres of Streptomyces chromosome contain conserved palindromic sequences with potential to form complex secondary structures. Mol. Microbiol. 28, 905–916 (1998).

Bao, K. & Cohen, S.N. Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces. Genes Dev. 15, 1518–1527 (2001).

Chen, C.W., Huang, C.-H., Lee, H.-H., Tsai, H.-H. & Kirby, R. Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet. 18, 522–529 (2002).

Chalker, A.F. et al. Genetic characterization of gram-positive homologs of the XerCD site-specific recombinases. J. Mol. Microb. Biotech. 2, 225–233 (2000).

Porthun, A. Bernhard, M. & Friedrich, B. Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha. Arch. Microbiol. 177, 159–166 (2002).

Olson, J.W., Mehta, N.S. & Mair, R.J. Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol. Microbiol. 39, 176–182 (2001).

Kitabatake, M. et al. Indolmycin resistance of Streptomyces coelicolor A3(2) by induced expression of one of its two tryptophanyl-tRNA synthetases. J. Biol. Chem. 277, 23882–23887 (2002).

Lamb, D.C. et al. The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). J. Biol. Chem. 277, 24000–24005 (2002).

Omura, S. et al. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA, 98, 12215–12220 (2001).

Hattori, M. et al. A novel method for making nested deletions and its application for sequencing of a 300 kb region of human APP locus. Nucleic Acids Res. 25, 1802–1808 (1997).

Salzberg, S.L., Delcher, A.L., Kasif, S. & White, O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26, 544–548 (1998).

Delcher, A.L., Harmon, D., Kasif, S., White, O. & Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999).

Ishikawa, J. & Hotta, K. FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol. Lett. 174, 251–253 (1999).

Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).