Mã tập thông tin bổ sung trên GF(p)
Tóm tắt
Từ khóa
#mã tập thông tin bổ sung #trường hữu hạn #hàm miễn tương quan #mã tự đối kháng #phân loại mãTài liệu tham khảo
Camion P., Canteaut A.: Correlation-immune and resilient functions over a finite alphabet and their applications in cryptography. Des. Codes Cryptogr. 16(2), 121–149 (1999)
Cannon J., Playoust C.: An Introduction to Magma. University of Sydney, Sydney (1994)
Carlet C.: More correlation-immune and resilient functions over galois fields and galois rings. In: Advances in Cryptology—EUROCRYPT’97. Lecture Note in Computer Sciences, vol. 1233, pp. 422-433. Springer, New York (1997)
Carlet C., Gaborit P., Kim J.-L., Solé P.: A new class of codes for Boolean masking of cryptographic computations. IEEE Trans. Inf. Theory 58, 6000–6011 (2012)
Carlet C., Freibert F., Guilley S., Kiermaier M., Kim J.-L., Solé P.: Higher-order CIS codes. IEEE Trans. Inf. Theory 60(9), 5283–5295 (2014)
Harada M., Munemasa A.: Classification of self-dual codes of length 36. Adv. Math. Commun. 6, 229–235 (2012)
Kim J.-L.: New extremal self-dual codes of lengths 36, 38 and 58. IEEE Trans. Inf. Theory 47, 386–393 (2001)
Kim J.-L., Lee Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Combin. Theory Ser. A 105(1), 79–95 (2004)
Kim J.-L., Lee Y.: An efficient construction of self-dual codes. Bull. Korean Math. Soc. 52(3), 915–923 (2015)
Lee Y.: http://math.ewha.ac.kr/~yoonjinl/CIS.pdf
MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes. Elsevier, Amsterdam (1981)
Pless V.S., Huffman W.C.: Handbook of Coding Theory. Elsevier, Amsterdam (1998)
Schnorr C.P., Vaudenay S.: Black box cryptanalysis of hash networks based on multipermutations. In: Advances in Cryptology—EUROCRYPT’94. Lecture Note in Computer Science 950, pp. 47–57. Springer, New York (1995).
Siegenthaler T.: Correlation-immunity of non-linear combining functions for cryptographic applications. IEEE Trans. Inf. Theory 30(5), 776–780 (1984)
Yildiz B., Ozger Z.O.: A generalization of the Lee weight to \({\mathbb{Z}}_{p^{k}}\). TWMS J. Appl. Eng. Math 2(2), 145–153 (2012)