Complementary analysis of Mueller-matrix images of optically anisotropic highly scattering biological tissues
Tóm tắt
Using optical techniques for tissue diagnostics (so-called ‘optical biopsy’) has been a subject of extensive research for many years. Various groups have been exploring different spectral and/or imaging modalities (e.g. diffuse reflectance spectroscopy, autofluorescence, Raman spectroscopy, optical coherence tomography (OCT), polarized light microscopy, etc.) for biomedical applications. In this paper, we report on using multi-wavelength imaging Mueller polarimetry combined with an appropriated image post-processing for the detection of tissue malignancy. We investigate a possibility of complementary analysis of Mueller matrix images obtained for turbid tissue-like scattering phantoms and excised human normal and cancerous colorectal tissue samples embedded in paraffin. Combined application of correlation, fractal and statistical analysis was employed to assess quantitatively the polarization-inhomogeneous scattered fields observed at the surface of tissue samples. The combined analysis of the polarimetric images of paraffin-embedded tissue blocks has proved to be an efficient tool for the unambiguous detection of tissue malignant transformation. A fractal structure was clearly observed at spatial distributions of depolarization of light scattered in healthy tissues in a visible range of spectrum, while corresponding distributions for cancerous tissues did not show such dependence. We demonstrate that paraffin does not destroy a fractal structure of spatial distribution of depolarization. Thus, the loss of fractality in spatial distributions of depolarization for cancerous tissue is related to the structural changes in the tissue sample induced by cancer itself and, therefore, may serve as a marker of the disease. The obtained results emphasize that a combined use of statistical, correlation and fractal analysis for the Mueller-matrix image post-processing is an effective approach for an assessment of variations of optical properties in turbid tissue-like scattering media and biological tissues, with a high potential to be transferred to clinical practice for screening cancerous tissue samples.
Tài liệu tham khảo
Luo, D.A., Barraza, E.T., Kudenov, M.W. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement. Appl. Opt. 56(35), 9770 (2017). https://doi.org/10.1364/AO.56.009770
Novikova, T., Bulkin, P., Popov, V., Haj Ibrahim, B., De Martino, A. Mueller polarimetry as a tool for detecting asymmetry in diffraction grating profiles. J. Vac. Sci. Tech. B. 29(5), 051804 (2011). https://doi.org/10.1116/1.3633693
Ortega-Quijano, N., Fanjul-Vélez, F., Arce-Diego, J.L.: Polarimetric study of birefringent turbid media with three-dimensional optic axis orientation. Biomed Opt Express. 5(1), 287 (2014). https://doi.org/10.1364/BOE.5.000287
Dubreuil, M., Delrot, P., Leonard, I., Alfalou, A., Brosseau, C., Dogariu, A.: Exploring underwater target detection by imaging polarimetry and correlation techniques. Appl. Opt. 52(5), 997 (2013). https://doi.org/10.1364/AO.52.00099
Manhas, S., Swami, M.K., Buddhiwant, P., Ghosh, N., Gupta, P.K., Singh, K.: Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry. Opt. Express. 14(1), 190–202 (2006). https://doi.org/10.1117/12.697294.
Angelsky, O.V., Tomka, Y.Y., Ushenko, A.G., Ushenko, Y.G., Ushenko, Y.A.: Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states. J. Phys. D. Appl. Phys. 38, 4227 (2005). https://doi.org/10.1088/0022-3727/38/23/014
Novikova, T.: Optical techniques for cervical neoplasia detection. Beilstein J. Nanotechnol. 8, 1844 (2017). https://doi.org/10.3762/bjnano.8.186
Pierangelo, A., Manhas, S., Benali, A., Fallet, C., Totobenazara, J.L., Antonelli, M.R., Novikova, T., Gayet, B., De Martino, A., Validire, P.: Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J. Biomed. Opt. 18(4), 046014 (2013). https://doi.org/10.1117/1.JBO.18.4.046014
Chue-Sang, J., Bai, Y., Stoff, S., Gonzalez, M., Holness, N., Gomes, J., Jung, R., Gandjbakhche, A., Chernomordik, V.V., Ramella-Roman, J.C.: Use of Mueller matrix polarimetry and optical coherence tomography in the characterization of cervical collagen anisotropy. J. Biomed. Opt. 22(8), 086010 (2017). https://doi.org/10.1117/1.JBO.22.8.086010
Vizet, J., Rehbinder, J., Deby, S., Roussel, S., Nazac, A., Soufan, R., Genestie, C., Haie-Meder, C., Fernandez, H., Moreau, F., Pierangelo, A.: In vivo imaging of uterine cervix with a Mueller polarimetric colposcope. Sci. Rep. 7(1), 2471 (2017). https://doi.org/10.1038/s41598-017-02645-9.
He, C., He, H., Chang, J., Dong, Y., Liu, S., Zeng, N., He, Y., Ma, H.: Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters. Biomed. Opt. Express. 6, 2934 (2015). https://doi.org/10.1364/BOE.6.002934
Ushenko, Y.A., Sidor, M.I., Bodnar, G.B.: Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer. Quant. Electron. 44(9), 785–790 (2014). https://doi.org/10.1070/QE2014v044n08ABEH015295
Gil, J.J., Ossikovski, R. Polarized Light and the Mueller Matrix Approach. CRC Press, Series in Optics and Optoelectronics, Boca Raton (2016).
Ghosh, N., Vitkin, A.: Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16, 110801 (2011). https://doi.org/10.1117/1.3652896
Savenkov, S.N., Marienko, V.V., Oberemok, E.A., Sydoruk, O.I. Generalized matrix equivalence theorem for polarization theory. Phys. Rev. E. 056607, 74 (2006). https://doi.org/10.1103/PhysRevE.74.056607
Gil, J.J.: Review on Mueller matrix algebra for the analysis of polarimetric measurements. J. Appl. Remote Sensing. 8(1), 081599 (2014). https://doi.org/10.1117/1.JRS.8.081599
Gil, J.J., San José, I., Ossikovski, R. Serial–parallel decompositions of Mueller matrices. J. Opt. Soc. Am. A. 30(1), 32 (2013). https://doi.org/10.1364/JOSAA.30.000032
Lu, S.Y., Chipman, R.A.: Interpetation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A. 13, 1106–1113 (1996). https://doi.org/10.1364/JOSAA.13.001106
Agarwal, N., Yoon, J., Garcia-Caurel, E., Novikova, T., Vanel, J.C., Pierangelo, A., Bykov, A., Popov, A., Meglinski, I., Ossikovski, R.: Spatial evolution of depolarization in homogeneous turbid media within the differential Mueller matrix formalism. Opt. Lett. 40(23), 5634 (2015). https://doi.org/10.1364/OL.40.005634
Ossikovski, R., Arteaga, O.: Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media. Opt. Lett. 39(15), 4470–4473 (2014). https://doi.org/10.1364/OL.39.004470
Cloude, S.R.: Group theory and polarization algebra. Optik. 75, 26 (1986)
Angelsky, O.V., Ushenko, A.G., Ushenko, Y.A., Pishak, V.P., Peresunko, A.P.: Statistical, correlation, and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues. In: Tuchin, V.V. (ed.) Handbook of Photonics for Biomedical Science, pp. 283–322. CRC Press, London (2010)
Wróbel, M.S., Popov, A.P., Bykov, A.V., Kinnunen, M., Jędrzejewska-Szczerska, M., Tuchin, V.V. Measurements of fundamental properties of homogeneous tissue phantoms. J. Biomed. Opt. 20, 045004 (2015). https://doi.org/10.1117/1.JBO.20.4.045004
Novikova, T., Rehbinder, J., Haddad, H., Deby, S., Teig, B., Nazac, A., Pierangelo, A., Moreau, F., De Martino, A.: Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue. Biomedical Optics. (2016). https://doi.org/10.1364/TRANSLATIONAL.2016.TTh3B.2 OSA Technical Digest, paper TTh3B.2
Wilson, J.W., Degan, S., Warren, W.S., Fischer, M.C.: Optical clearing of archive-compatible paraffin embedded tissue for multiphoton microscopy. Biomed. Opt. Express. 3(11), 2752 (2012). https://doi.org/10.1364/BOE.3.002752