Competitive suppression of dengue virus replication occurs in chikungunya and dengue co-infected Mexican infants
Tóm tắt
Co-circulation of dengue virus (DENV) and chikungunya virus (CHIKV) is increasing worldwide but information on the viral dynamics and immune response to DENV-CHIKV co-infection, particularly in young infants, is scant. Blood samples were collected from 24 patients, aged 2 months to 82 years, during a CHIKV outbreak in Mexico. DENV and CHIKV were identified by RT-PCR; ELISA was used to detect IgM and IgG antibodies. CHIKV PCR products were cloned, sequenced and subjected to BLAST analysis. To address serological findings, HMEC-1 and Vero cells were inoculated with DENV-1, DENV-2 and CHIKV alone and in combination (DENV-2-CHIKV and DENV-1-CHIKV); viral titers were measured at 24, 48 and 72 h. Nine patients (38%) presented co-infection, of who eight were children. None of the patients presented severe illness. Sequence analysis showed that the circulating CHIKV virus belonged to the Asian lineage. Seroconversion to both viruses was only observed in the four patients five years or older, while the five infants under two years of age only seroconverted to CHIKV. Viral titers in the CHIKV mono-infected cells were greater than in the DENV-1 and DENV-2 mono-infected cells. Furthermore, we observed significantly increased CHIKV progeny and reduction of DENV progeny in the co-infected cells. In our population, DENV-CHIKV co-infection was not associated with increased clinical severity. Our in vitro assay findings strongly suggest that the lack of DENV IgG conversion in the co-infected infants is due to suppression of DENV replication by the Asian lineage CHIKV. The presence of maternal antibody and immature immune responses in the young infants may also play a role.
Tài liệu tham khảo
Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–88.
Rezza G. Dengue and chikungunya: long-distance spread and outbreaks in naive areas. Pathog Glob Health. 2014;108:349–55.
Petersen LR, Powers AM. Chikungunya: epidemiology. F1000Res. 2016;5:1–8.
Johansson MA, Powers AM, Pesik N, Cohen NJ, Staples JE. Nowcasting the spread of chikungunya virus in the Americas. PLoS One. 2014;9:e104915.
Gomez GMA, Zamudio OMD, Murillo KDT, Ponce G, Cavazos MED, Tavitas AMI, et al. Chikungunya fever in patients from northeastern Mexico. Southwest Entomol. 2017;42:143–52.
Rosso F, Pacheco R, Rodriguez S, Bautista D. Co-infection by chikungunya virus (CHIK-V) and dengue virus (DEN-V) during a recent outbreak in Cali. Colombia: report of a fatal case. Rev Chilena Infectol. 2016;33:464–7. (In Spanish).
Ruckert C, Weger LJ, Garcia LSM, Young MC, Byas AD, Murrieta RA, et al. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat Commun. 2017;8:1–9.
Saswat T, Kumar A, Kumar S, Mamidi P, Muduli S, Debata NK, et al. High rates of co-infection of dengue and chikungunya virus in Odisha and Maharashtra, India during 2013. Infect Genet Evol. 2015;35:134–41.
Cigarroa TN, Blitvich BJ, Cetina TRC, Talavera ALG, Baak BCM, Torres COM, et al. Chikungunya virus in febrile humans and Aedes aegypti mosquitoes, Yucatan, Mexico. Emerg Infect Dis. 2016;22:1804–7.
Kautz TF, Diaz GEE, Erasmus JH, Malo GIR, Langsjoen RM, Patterson EI, et al. Chikungunya virus as cause of Febrile Illness outbreak, Chiapas. Mexico, 2014. Emerg Infect Dis. 2015;21:2070–3.
Lorono PMA, Farfan AJA, Rosado PEP, Kuno G, Gubler DJ. Epidemic dengue 4 in the Yucatan. Mexico; 1984. Rev Inst Med Trop Sao Paulo. 1993;35:449–55.
http://www.facmed.unam.mx/deptos/microbiologia/virologia/dengue.html. Accessed 8 Mar 2016.
DaPalma T, Doonan BP, Trager NM. Kasman LM. A systematic approach to virus-virus interactions. Virus Res. 2010;149:1–9.
Muturi EJ, Bara J. Sindbis virus interferes with dengue 4 virus replication and its potential transmission by Aedes albopictus. Parasit Vectors. 2015;8:65.
Potiwat R, Komalamisra N, Thavara U, Tawatsin A, Siriyasatien P. Competitive suppression between chikungunya and dengue virus in Aedes albopictus c6/36 cell line. Southeast Asian J Trop Med Public Health. 2011;42:1388–94.
Salas BJS, De Nova OM. Viral interference and persistence in mosquito-borne flaviviruses. J Immunol Res. 2015;2015:873404.
Limon FAY, Perez TM, Estrada GI, Vaughan G, Escobar GA, Calderon AJ, et al. Dengue virus inoculation to human skin explants: an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells. Int J Exp Pathol. 2005;86:323–34.
Garcia CJ, Carrillo HS, Leon JM, Romero RH, Valenzuela LP, Lopez GM, et al. Generation and characterization of a rat monoclonal antibody against the RNA polymerase protein from Dengue Virus-2. Immunol Invest. 2014;43:28–40.
Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30:545–51.
Felsenstein J. Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet. 1988;22:521–65.
Ronquist F, Teslenko M, van der MP, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
Morens DM, Halstead SB, Repik PM, Putvatana R, Raybourne N. Simplified plaque reduction neutralization assay for dengue viruses by semimicro methods in BHK-21 cells: comparison of the BHK suspension test with standard plaque reduction neutralization. J Clin Microbiol. 1985;22:250–4.
Ratsitorahina M, Harisoa J, Ratovonjato J, Biacabe S, Reynes JM, Zeller H, et al. Outbreak of dengue and chikungunya fevers, Toamasina, Madagascar, 2006. Emerg Infect Dis. 2008;14:1135–7.
Caron M, Paupy C, Grard G, Becquart P, Mombo I, Nso BB, et al. Recent introduction and rapid dissemination of chikungunya virus and dengue virus serotype 2 associated with human and mosquito coinfections in Gabon, central Africa. Clin Infect Dis. 2012;55:45–53.
Baba M, Logue CH, Oderinde B, Abdulmaleek H, Williams J, Lewis J, et al. Evidence of arbovirus co-infection in suspected febrile malaria and typhoid patients in Nigeria. J Infect Dev Ctries. 2013;7:51–9.
Chahar HS, Bharaj P, Dar L, Guleria R, Kabra SK, Broor S. Co-infections with chikungunya virus and dengue virus in Delhi, India. Emerg Infect Dis. 2009;15:1077–80.
Taraphdar D, Sarkar A, Mukhopadhyay BB, Chatterjee S. A comparative study of clinical features between monotypic and dual infection cases with chikungunya virus and dengue virus in West Bengal, India. Am J Trop Med Hyg. 2012;86:720–3.
Pepin KM, Lambeth K, Hanley KA. Asymmetric competitive suppression between strains of dengue virus. BMC Microbiol. 2008;8:28.
Diaz QJA, Ortiz AAJ, Fragoso FDE, Garces AF, Escobar EN, Vazquez PM, et al. Complete genome sequences of chikungunya virus strains isolated in Mexico: first detection of imported and autochthonous cases. Genome Announc. 2015;3:e00300-15.
Lanciotti RS, Valadere AM. Transcontinental movement of Asian genotype chikungunya virus. Emerg Infect Dis. 2014;20:1400–2.
Mattar S, Miranda J, Pinzon H, Tique V, Bolanos A, Aponte J, et al. Outbreak of chikungunya virus in the north Caribbean area of Colombia: clinical presentation and phylogenetic analysis. J Infect Dev Ctries. 2015;9:1126–32.
Chiam CW, Chan YF, Ong KC, Wong KT, Sam IC. Neurovirulence comparison of chikungunya virus isolates of the Asian and East/Central/South African genotypes from Malaysia. J Gen Virol. 2015;96:3243–54.
Romero SE, Lira CJJ, Pacheco TF, Palma CAG. Neonatal dengue. Presentation of clinical cases. Ginecol Obstet Mex. 2015;83:308–15. (In Spanish).
Khamim K, Hattasingh W, Nisalak A, Kaewkungwal J, Fernandez S, Thaisomboonsuk B, et al. Neutralizing dengue antibody in pregnant Thai women and cord blood. PLoS Negl Trop Dis. 2015;9:1–10.
Simmons CP, Chau TN, Thuy TT, Tuan NM, Hoang DM, Thien NT, et al. Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J Infect Dis. 2007;196:416–24.
Pengsaa K, Luxemburger C, Sabchareon A, Limkittikul K, Yoksan S, Chambonneau L, et al. Dengue virus infections in the first 2 years of life and the kinetics of transplacentally transferred dengue neutralizing antibodies in thai children. J Infect Dis. 2006;194:1570–6.
Castanha PM, Braga C, Cordeiro MT, Souza AI, Silva CD, Martelli CM, et al. Placental transfer of dengue virus (DENV)-specific antibodies and kinetics of DENV infection-enhancing activity in Brazilian infants. J Infect Dis. 2016;214:265–72.
Libraty DH, Acosta LP, Tallo V, Segubre-Mercado E, Bautista A, Potts JA, et al. A prospective nested case-control study of dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med. 2009;6:e1000171.
Lee PX, Ong LC, Libau EA, Alonso S. Relative contribution of dengue IgG antibodies acquired during gestation or breastfeeding in mediating dengue disease enhancement and protection in Type I Interferon Receptor-Deficient Mice. PLoS Negl Trop Dis. 2016;10:e0004805.
Siegrist CA. Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine. 2003;21:3406–12.
Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9:185–94.
Ruiz SM, Aguilar BJA, Upasani V, Van EMH, Smit JM, Rodenhuis ZIA. Suppression of chikungunya virus replication and differential innate responses of human peripheral blood mononuclear cells during co-infection with dengue virus. PLoS Negl Trop Dis. 2017;11:e0005712.