Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Định lượng photometric cạnh tranh enzyme miễn dịch cho fullerene C60 và các dẫn xuất của nó bằng cách sử dụng một hợp chất fullerene liên hợp với peroxidase củ cải đường
Tóm tắt
Bài báo mô tả một phương pháp thử nghiệm miễn dịch enzyme vi mạch loại ELISA nhạy cảm cao một bước cho fullerene C60 và các dẫn xuất của nó. Các kháng thể đơn dòng chống fullerene và một hợp chất giữa fullerene và peroxidase củ cải đường đã được sử dụng làm thuốc thử đặc hiệu. Một thử nghiệm ELISA cạnh tranh trực tiếp được thực hiện dựa trên các kháng thể được cố định trong giếng của đĩa vi titer, một kháng nguyên gắn nhãn peroxidase, và việc phát hiện thông qua thuốc nhuộm hình thành từ 3,3′,5,5′-tetramethylbenzidine và hydrogen peroxide. Cả fullerene C60 nguyên chất và các dạng tan trong nước của nó đều có thể được xác định. Giới hạn phát hiện là 1,5 ng∙mL−1 cho fullerene C60 và từ 0,1 đến 1,3 ng∙mL−1 cho các dẫn xuất của nó. Định dạng ELISA này cho phép giảm gần như một nửa thời gian cần thiết cho phép thử nghiệm so với sơ đồ gián tiếp với các kháng thể gắn nhãn.
Từ khóa
#fullerene C60 #ELISA #enzyme miễn dịch #kháng thể đơn dòng #peroxidase củ cải đườngTài liệu tham khảo
Chen Z, Mao R, Liu Y (2012) Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr Drug Metab 1:1035–1045
Grebowski J, Kazmierska P, Krokosz A (2013) Fullerenols as a new therapeutic approach in nanomedicine. Biomed Res Int 2013, 751913
Yan W, Seifermann SM, Pierrat P, Bräse S (2015) Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org Biomol Chem 13:25–54
Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V (2010) The biological mechanisms and physicochemical characteristics responsible for driving fullerenetoxicity. Toxicol Sci 114:162–182
Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SA, Christensen FM (2010) Review of fullerene toxicity and exposure – appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–473
Trpkovic A, Todorovic-Markovic B, Trajkovic V (2012) Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress. Arch Toxicol 86:1809–1827
Hendrickson OD, Zherdev AV, Gmoshinsky IV, Dzantiev BB (2014) Fullerenes: in vivo studies of biodistribution, toxicity, and biological action. Nanotechnologies Russ 9:601–617
Araújo F, Shrestha N, Granja PL, Hirvonen J, Santos HA, Sarmento B (2015) Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opin Drug Metab Toxicol 11:381–393
Xu JY, Han K, Li SX, Cheng JS, Xu GT, Li WX, Li QN (2009) Pulmonary responses to polyhydroxylated fullerenols, C(60)(OH)(x). J Appl Toxicol 29:578–584
Folkmann JKR, Jacobsen NR, Wallin H, Loft S, Moller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117:703–708
Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. Toxicol Appl Pharmacol 244:226–233
Hendrickson OD, Morozova OV, Zherdev AV, Yaropolov AI, Klochkov SG, Bachurin SO, Dzantiev BB (2015) Study of distribution and biological effects of fullerene C60 after single and multiple intragastrical administrations to rats. Fuller Nanotub Car N 23:658–668
Xia XR, Monteiro-Riviere NA, Riviere JE (2006) Trace analysis of fullerenes in biological samples by simplified liquid-liquid extraction and high-performance liquid chromatography. J Chromatogr A 1129:216–222
Kubota R, Tahara M, Shimizu K, Sugimoto N, Hirose A, Nishimura T (2011) Time-dependent variation in the biodistribution of C60 in rats determined by liquid chromatography-tandem mass spectrometry. Toxicol Lett 206:172–177
Carboni A, Emke E, Parsons JR, Kalbitz K, de Voogt P (2014) An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection. Anal Chim Acta 807:159–165
Wu H, Lin L, Wang P, Jiang S, Dai Z, Zou X (2011) Solubilization of pristine fullerene by the unfolding mechanism of bovine serum albumin for cytotoxic application. Chem Commun (Camb) 47:10659–10661
Torres VM, Posa M, Srdjenovic B, Simplício AL (2011) Solubilization of fullerene C60 in micellar solutions of different solubilizers. Colloids Surf B: Biointerfaces 82:46–53
Aich N, Boateng LK, Flora JR, Saleh NB (2013) Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer. Nanotechnology 24:395602
Pénicaud A (2014) Solubilization of fullerenes, carbon nanotubes, and graphene. Top Curr Chem 348:1–35
Bartocci S, Mazzier D, Moretto A, Mba M (2015) A peptide topological template for the dispersion of [60]fullerene in water. Org Biomol Chem 13:348–352
Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF (1998) Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A 95:10809–10813
Hendrickson OD, Fedyunina NS, Martianov AA, Zherdev AV, Dzantiev BB (2011) Production of anti-fullerene C60 polyclonal antibodies and study of their interaction with a conjugated form of fullerene. J Nanoparticle Res 13:3713–3719
Hendrickson O, Fedyunina N, Zherdev A, Solopova O, Sveshnikov P, Dzantiev B (2012) Production of monoclonal antibodies against fullerene C60 and development of a fullerene enzyme immunoassay. Analyst 137:98–105
Yang S, Guo X, Cui R, Dong J, Xing G, Liu X, Yuan H, Tao Y, Zhang Z, Sun B (2013) An electrochemical immunosensor for fullerenol detection based on the generated antibody. Anal Lett 46:2213–2222
Sittampalam GS, Smith WC, Miyakawa TW, Smith DR, McMorris CJ (1996) Application of experimental design techniques to optimize a competitive ELISA. J Immunol Methods 190:151–161
Ugarova NN, Rozhkova GD, Berezin IV (1978) Chemical modification of epsilon-amino lysine groups in horseradish peroxidase. Its effect on catalytic properties and spatial structure of the enzyme. Biokhimiia 43:1242–1250
Zherdev AV, Romanenko OG, Dzantiev BB (1997) Interaction between antibodies and hapten-protein conjugates of different composition: theoretical predictions and experimental data. J Immunoass 18:67–95
Wild D. (Ed.) (2013) The Immunoassay Handbook. Theory and applications of ligand binding, ELISA and related techniques, 4th edn. Elsiever: UK
Semenov KN, Charykov NA, Keskinov VA, Piartman AK, Blokhin AA, Kopyrin AA (2010) Solubility of light fullerenes in organic solvents. J Chem Eng Data 55:13–36
Montellano A, Da Ros T, Bianco A, Prato M (2011) Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041
Meng J, Liang X, Chen X, Zhao Y (2013) Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr Biol (Camb) 5:43–47
Kreyling WG, Fertsch-Gapp S, Schäffler M, Johnston BD, Haberl N, Pfeiffer C, Diendorf J, Schleh C, Hirn S, Semmler-Behnke M, Epple M, Parak WJ (2014) In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics. Beilstein J Nanotechnol 5:1699–1711
Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z (2015) Towards understanding of nanoparticle-protein corona. Arch Toxicol 89:519–539
Yang X, Ebrahimi A, Li J, Cui Q (2014) Fullerene-biomolecule conjugates and their biomedicinal applications. Int J Nanomedicine 9:77–92