Competitive photo-degradation performance of ZnO modified bentonite clay in water containing both organic and inorganic contaminants

Sustainable Environment Research - Tập 29 - Trang 1-12 - 2019
Suchithra Padmajan Sasikala1,2, T. A. Nibila1, Kunnathuparambil Babu Babitha1, Abdul Azeez Peer Mohamed1, Ananthakumar Solaiappan1
1Functional Materials, Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, Trivandrum, India
2Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Tóm tắt

This study reports the activity difference of zinc oxide modified bentonite clay (Photo-Zn-Bent) photocatalyst when in contact with different environmentally toxic pollutants in a single component and bi-component pollutant systems. The layered structure of purified and swollen nano-bentonite clay (Bent) has tunable interlayer spacing to grow zinc oxide (ZnO) nanoparticles, thereby integrating the adsorbing nature of clay and semiconductor property of ZnO in one hierarchical structure. Initial adsorption studies using methylene blue (MB) showed that the adsorption capacity of Photo-Zn Bent is greater than Bent and ZnO. The photocatalytic pollutant degradation activity of Photo-Zn Bent is compared with ZnO using both single component and bi-component pollutant systems (MB, phenol, mixture of MB and phenol, mixture of phenol and Cr(VI)). We found that Photo-Zn Bent displayed 33% greater MB degradation rate compared to ZnO. Photodegradation efficiency of Photo-Zn-Bent considerably differs for inorganic-organic and organic-organic bicomponent pollutant systems. In bicomponent systems, photodegradation rate of phenol decreased to an extent of 88% in the presence of MB, and increased to 31% in the presence of Cr(VI). On the other hand, photodegradation rate of MB remains unaffected in the presence of phenol, but increased to 56% in the presence of Cr(VI). However, if used in bicomponent pollutant systems for simultaneous cycles, Photo-Zn Bent showed lesser activity after 3 cycles, which in turn gave further insight on to the decay of catalyst with respect to the nature of pollutants.

Tài liệu tham khảo

Thi VHT, Lee BK. Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J Hazard Mater. 2017;324:329–39. Makrigianni V, Giannakas A, Deligiannakis Y, Konstantinou I. Adsorption of phenol and methylene blue from aqueous solutions by pyrolytic tire char: equilibrium and kinetic studies. J Environ Chem Eng. 2015;3:574–82. Anirudhan TS, Rijith S, Suchithra PS. Preparation and characterization of iron(III) complex of an amino-functionalized polyacrylamide-grafted lignocellulosics and its application as adsorbent for chromium(VI) removal from aqueous media. J Appl Polym Sci. 2010;115:2069–83. Kiran B, Rani N, Kaushik A. Environmental toxicity: exposure and impact of chromium on cyanobacterial species. J Environ Chem Eng. 2016;4:4137–42. Mella B, Glanert AC, Gutterres M. Removal of chromium from tanning wastewater and its reuse. Process Saf Environ. 2015;95:195–201. Linsha V, Suchithra PS, Mohamed AP, Ananthakumar S. Amine-grafted alumino-siloxane hybrid porous granular media: a potential sol-gel sorbent for treating hazardous Cr(VI) in aqueous environment. Chem Eng J. 2013;220:244–53. Wang YT, Latchaw JL. Anaerobic biodegradability and toxicity of hydrogen peroxide oxidation products of phenols. Res J Water Pollut C. 1990;62:234–8. Anirudhan TS, Suchithra PS, Rijith S. Amine-modified polyacrylamide-bentonite composite for the adsorption of humic acid in aqueous solutions. Colloid Surface A. 2008;326:147–56. Anirudhan TS, Suchithra PS. Heavy metals uptake from aqueous solutions and industrial wastewaters by humic acid-immobilized polymer/bentonite composite: kinetics and equilibrium modeling. Chem Eng J. 2010;156:146–56. Anirudhan TS, Suchithra PS, Radhakrishnan PG. Synthesis and characterization of humic acid immobilized-polymer/bentonite composites and their ability to adsorb basic dyes from aqueous solutions. Appl Clay Sci. 2009;43:336–42. Hajjaji M, Alami A, El Bouadili A. Removal of methylene blue from aqueous solution by fibrous clay minerals. J Hazard Mater. 2006;135:188–92. Xie J, Meng WN, Wu DY, Zhang ZJ, Kong HN. Removal of organic pollutants by surfactant modified zeolite: comparison between ionizable phenolic compounds and non-ionizable organic compounds. J Hazard Mater. 2012;231–2:57–63. Anirudhan TS, Tharun AR, Rijith S, Suchithra PS. Synthesis and characterization of a novel graft copolymer containing carboxyl groups and its application to extract uranium(VI) from aqueous media. J Appl Polym Sci. 2011;122:874–84. Anirudhan TS, Divya L, Bringle CD, Suchithra PS. Removal of copper(II) and zinc(II) from aqueous solutions using a lignocellulosic-based polymeric adsorbent containing amidoxime chelating functional groups. Sep Sci Technol. 2010;45:2383–93. Parida KM, Parija S. Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Sol Energy. 2006;80:1048–54. Kavitha MK, Pillai SC, Gopinath P, John H. Hydrothermal synthesis of ZnO decorated reduced graphene oxide: understanding the mechanism of photocatalysis. J Environ Chem Eng. 2015;3:1194–9. Alaraby M, Annangi B, Hernandez A, Creus A, Marcos R. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. J Hazard Mater. 2015;296:166–74. Sakallioglu T, Bakirdoven M, Temizel I, Demirel B, Copty NK, Onay TT, et al. Leaching of nano-ZnO in municipal solid waste. J Hazard Mater. 2016;317:319–26. Wu CH, Wu CF, Shr JF, Hsieh CT. Parameter settings on preparation of composite photocatalysts for enhancement of adsorption/photocatalysis hybrid capability. Sep Purif Technol. 2008;61:258–65. Wang SY, Ma JY, Li ZJ, Su HQ, Alkurd NR, Zhou WL, et al. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. J Hazard Mater. 2015;285:368–74. Batistela VR, Fogaca LZ, Favaro SL, Caetano W, Fernandes-Machado NRC, Hioka N. ZnO supported on zeolites: photocatalyst design, microporosity and properties. Colloid Surface A. 2017;513:20–7. Kabra K, Chaudhary R, Sawhney RL. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res. 2004;43:7683–96. Fatimah I, Wang SB, Wulandari D. ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Appl Clay Sci. 2011;53:553–60. Meshram S, Limaye R, Ghodke S, Nigam S, Sonawane S, Chikate R. Continuous flow photocatalytic reactor using ZnO-bentonite nanocomposite for degradation of phenol. Chem Eng J. 2011;172:1008–15. Suchithra PS, Shadiya CP, Mohamed AP, Velusamy P, Ananthakumar S. One-pot microwave mediated growth of heterostructured ZnO@AlSi as a potential dual-function eco-catalyst for treating hazardous pollutants in water resources. Appl Catal B Environ. 2013;130–1:44–53. Suchithra PS, Carleer R, Ananthakumar S, Yperman J. A hybridization approach to efficient TiO2 photodegradation of aqueous benzalkonium chloride. J Hazard Mater. 2015;293:122–30. Meulenkamp EA. Synthesis and growth of ZnO nanoparticles. J Phys Chem B. 1998;102:5566–72. Anirudhan TS, Suchithra PS. Humic acid-immobilized polymer/bentonite composite as an adsorbent for the removal of copper(II) ions from aqueous solutions and electroplating industry wastewater. J Ind Eng Chem. 2010;16:130–9. Lin DD, Pan W, Wu H. Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning. J Am Ceram Soc. 2007;90:71–6. Wang YF, Zhang JH, Chen XL, Li X, Sun ZQ, Zhang K, et al. Morphology-controlled fabrication of polygonal ZnO nanobowls templated from spherical polymeric nanowell arrays. J Colloid Interf Sci. 2008;322:327–32. Morales AE, Mora ES, Pal U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Física S. 2007;53:18–22. Kubelka P, Munk F. An article on optics of paint layers. Z Tech Phys. 1931;12:593–603. Chen DW, Ray AK. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Appl Catal B Environ. 1999;23:143–57. Gerischer H, Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles. J Phys Chem US. 1991;95:5261–7. Wang CM, Heller A, Gerischer H. Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds. J Am Chem Soc. 1992;114:5230–4. Williams MF, Fonfe B, Sievers C, Abraham A, van Bokhoven JA, Jentys A, et al. Hydrogenation of tetralin on silica-alumina-supported Pt catalysts I. Physicochemical characterization of the catalytic materials. J Catal. 2007;251:485–96. Sobczynski A, Duczmal L, Zmudzinski W. Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J Mol Catal A Chem. 2004;213:225–30.