Competitive Lotka–Volterra population dynamics with jumps
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gopalsamy, 1992
Kuang, 1993
Li, 1999, The criteria for globally stable equilibrium in n-dimensional Lotka–Volterra systems, J. Math. Anal. Appl., 240, 600, 10.1006/jmaa.1999.6612
Takeuchi, 1980, The existence of globally stable equilibria of ecosystems of the generalized Volterra type, J. Math. Biol., 10, 401, 10.1007/BF00276098
Takeuchi, 1978, The stability of generalized Volterra equations, J. Math. Anal. Appl., 62, 453, 10.1016/0022-247X(78)90139-7
Xiao, 2000, Limit cycles for the competitive three dimensional Lotka–Volterra system, J. Differential Equations, 164, 1, 10.1006/jdeq.1999.3729
Gard, 1984, Persistence in stochastic food web models, Bull. Math. Biol., 46, 357, 10.1007/BF02462011
Gard, 1986, Stability for multispecies population models in random environments, Nonlinear Anal., 10, 1411, 10.1016/0362-546X(86)90111-2
Mao, 2002, Environmental noise suppresses explosion in population dynamics, Stochastic Process. Appl., 97, 95, 10.1016/S0304-4149(01)00126-0
Mao, 2005, Stochastic differential delay equations of population dynamics, J. Math. Anal. Appl., 304, 296, 10.1016/j.jmaa.2004.09.027
Mao, 2006
G. Hu, K. Wang, On stochastic logistic equation with Markovian switching and white noise, Osaka J. Math. (2010) (preprint).
Jiang, 2005, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303, 164, 10.1016/j.jmaa.2004.08.027
Liu, 2011, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., 375, 443, 10.1016/j.jmaa.2010.09.058
Zhu, 2009, On hybrid competitive Lotka–Volterra ecosystems, Nonlinear Anal., 71, 10.1016/j.na.2009.01.166
Zhu, 2009, On competitive Lotka–Volterra model in random environments, J. Math. Anal. Appl., 357, 154, 10.1016/j.jmaa.2009.03.066
Roubik, 1983, Experimental community studies: time-series tests of competition between African and neotropical bees, Ecology, 64, 971, 10.2307/1937803
Roughgarden, 1979
Peng, 2006, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 116, 370, 10.1016/j.spa.2005.08.004
Prato, 1996
Lipster, 1980, A strong law of large numbers for local martingales, Stochastics, 3, 217, 10.1080/17442508008833146
Kunita, 2010, Itô’s stochastic calculus: its surprising power for applications, Stochastic Process. Appl., 120, 622, 10.1016/j.spa.2010.01.013
Øksendal, 2007
Applebaum, 2009