Competing pathways in drug metabolism. II. An identical, anterior enzymic distribution for 2- and 5-sulfoconjugation and a posterior localization for 5-glucuronidation of gentisamide in the rat liver
Tóm tắt
Gentisamide (2,5-dihydroxybenzamide, GAM), a substrate that forms two monosulfates at the 2 and 5 positions (GAM-2S and GAM-5S) and a monoglucuronide at the 5 position (GAM-5G), was delivered at 8 or 80 μM by normal (N) and retrograde (R) flows to the once-through rat liver preparation. At the lower (8 μM) input concentration, ratios of conjugate formation rate, GAM-5S/GAM-5G and GAM-2S/GAM-5G, were decreased significantly (4.01±1.42 to 2.93±0.99, and 1.13±0.65 to 0.66±0.41, respectively) whereas a small but significant increase in the steady-state extraction ratio, E (0.89±0.029 to 0.94±0.016), was observed upon changing the flow direction from N to R. At the higher input GAM concentration (80 μM), conjugate formation rate ratios were relatively constant for GAM-5S/GAM-5G (1.18±0.08 to 1.11±0.12) and GAM-2S/GAM-5G (0.33±0.05 to 0.31±0.05) upon changing flow direction from N to R, despite a slight increase in E from 0.87±0.023 to 0.91±0.016 was observed. These results suggest that the sulfotransferase activities responsible for 2- and 5-sulfoconjugations are identically distributed and localized anterior to 5-glucuronidation activities during a normal flow of substrate into the rat liver (entering the portal vein and exiting the hepatic vein), and that the presence of uneven distribution of conjugation activities is discriminated only at the lower input drug concentration. At high concentration (>Km for all systems), saturation of all pathways occurs, and other, anteriorly/identically distributed competing pathways would fail to perturb downstream intrahepatic drug concentrations arid the resultant conjugation rates. The lack of change in metabolic profiles renders the condition unsuitable for examination of uneven distribution of enzymes in the liver. These observations were generally predicted by theoretical enzymic models of consistent distribution patterns. Because 2- and 5-sulfation were mediated by systems of similar Km but different Vmax values, two possibilities, the same isozyme of sulfotransferase being involved in the formation of two enzyme-substrate complexes to form two distinctly different products or two isozymes of sulfotransferases of identical distribution, were discussed.
Tài liệu tham khảo
A. M. Rappaport. The structural and functional unit in the human liver (liver acinus).Anat. Rec. 130: 673–686 (1958).
A. M. Rappaport, Z. J. Borowy, W. M. Lougheed, and W. N. Lotto. Subdivision of hexagonal liver lobules into a structural and functional unit: Role in hepatic physiology and pathology.Anat. Rec. 119: 11–34 (1954).
J. J. Gumucio and D. L. Miller. Functional implications of liver cell heterogeneity.Gastroenterology 80: 393–403 (1981).
K. Jungerman and N. Katz. Functional hepatocellular heterogeneity.Hepatology 2: 385–395 (1982).
J. L. Boyer, E. Elias, and T. J. Layden. The paracellular pathway and bile formation.Yale J. Biol. Med. 52: 61–67 (1979).
T. Matsumara, T. Kashiwaga, H. Meren, and R. G. Thurman. Gluconeogenesis predominates in the periportal regions of the liver lobule.Eur. J. Biochem. 144: 409–414 (1982).
T. Matsumara and R. G. Thurman. Predominance of glycolysis in pericentral regions of the liver lobule.Eur. J. Biochem. 140: 229–234 (1982).
N. Katz. Metabolism of lipids. In R. G. Thurman, F. C. Kaufmann, and K. Jungerman (eds.),Regulation of Hepatic Metabolism. Intra- and Intercellular Compartmentation, Plenum Press, New York, 1986, pp. 237–252.
J. Baron, R. A. Redick, and F. P. Guengerich. An immunohistochemical study on the localizations and distributions of phenobarbital- and 3-methylcholanthrene-inducible cytochrome P-450 within the livers of untreated rats.J. Biol. Chem. 256:5931–5937 (1981).
P. E. Gooding, J. Chayen, B. Sawyer, and T. F. Slater. Cytochrome P-450 distribution in rat liver and the effect of sodium phenobarbitone administration.Chem. Biol. Interact. 20:299–310 (1978).
J. Baron, R. A. Redick, F. P. Guengerich. Immunohistochemical localization of cytochromes P-450 in rat liver.Life Sci. 23:2627–2632 (1978).
J. A. Redick, J. Baron and F. P. Guengerich. Immunohistochical localization of glutathione-S transferases in livers of untreated rats.J. Biol. Chem. 257:15200–15203 (1982).
K. S. Pang and J. A. Terrell. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats.J. Pharmacol. Exp. Ther. 216:339–346 (1981).
D. Ullrich, G. Fisher, N. Katz, and K. W. Bock. Intralobular distribution of UDP-glucuronosyltransferase in livers from untreated, 3-methylcholanthrene and phenobarbital-treated rats.Chem. Biol. Interact. 48:181–190 (1984).
J. G. Conway, F. C. Kauffman, S. Ji, and R. G. Thurman. Rates of sulfation and glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule.Mol. Pharmacol. 22:509–516 (1982).
J. R. deBaun, J. Y. R. Smith, E. C. Miller, and J. A. Miller. Reactivityin vivo of the carcinogenN-hydroxy-2-acetylaminoflourene: Increase by sulfate ion.Science 167:184–186 (1971).
J. H. N. Meerman and G. J. Mulder. Prevention of the hepatotoxic action ofN-hydroxy-2-acetylaminofluorene in the rat by inhibition ofN-O-sulfation by pentachlorophenol.Life Sci. 28:2361–2365 (1981).
K. S. Pang and R. N. Stillwell. An understanding of the role of enzyme localization of the liver on metabolite kinetics: A computer simulation.J. Pharmacokin. Biopharm. 11:451–468 (1983).
K. S. Pang, H. Koster, I. C. M. Halsema, E. Scholtens, and G. J. Mulder. Aberrant pharmacokinetics of harmol in the perfused rat liver preparation: Sulfate and glucuronide conjugations.J. Pharmacol. Exp. Ther. 219:134–140 (1981).
M. E. Morris, V. Yuen, B. K. Tang, and K. S. Pang. Competing pathways in drug metabolism. I. Effect of input concentration on the conjugation of gentisamide in the once-throughin situ perfused rat liver preparation.J. Pharmacol. Exp. Ther. 245:614–652 (1988).
X. Xu, B. K. Tang, and K. S. Pang. Metabolism of salicylamide in the once-through perfused rat liver preparation: Compensation by glucuronidation and hydroxylation for sulfation.Fed. Proc. 44: Abs. No. 4945 (1985).
K. S. Pang, X. Xu, M. E. Morris and V. Yuen. Kinetic modeling of conjugations in liver.Fed. Proc. 46: 2439–2441 (1987).
M. E. Morris and K. S. Pang. The competition between two enzymes for substrate removal in liver: Modulating effects due to substrate recruitment of hepatocyte activity.J. Pharmacokin. Biopharm. 15:473–496 (1987).
J. G. Conway, F. C. Kauffman, T. Tsukuda, and R. G. Thurman. Glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule.Mol. Pharmacol. 25:487–493 (1984).
K. S. Pang, H. Koster, I. C. M. Halsema, E. Scholtens, G. J. Mulder, and R. N. Stillwell. Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation.J. Pharmacol. Exp. Ther. 224:647–653 (1983).
M. E. Morris and G. Levy. Determination of salicylamide and five metabolites in biologic fluids by high performance liquid chromatography.J. Pharm. Sci. 72:612–617 (1983).
J. A. Faust, L. J. Jules, and M. Sahyun. Derivatives of salicylamide.J. Am. Pharm. Assoc. (Sci. Ed.)45:514–517 (1956).
C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver: the transport and net removal of galactose.J. Clin. Invest. 52:991–1009 (1973).
J. R. Gillette. Problems in correlatingin vitro andin vivo studies of drug metabolism. In L. Z. Benet, G. Levy, and B. L. Ferraiolo (eds.),Pharmacokinetics. A Modern View, Plenum Press, New York, 1982, pp. 235–252.
W. R. Potter, R. V. Branchflower and W. F. Trager. A kinetic method for the determination of multiple forms of microsomal cytochrome P-450.Biochem. Pharmacol. 26:549–550 (1977).
J. Scholermich, S. Kitamura, and K. Miyai. Structural and functional integrity of rat liver perfused in backward and forward direction.Res. Exp. Med. 186:397–405 (1986).
M. V. St-Pierre, W. F. Lee, W. F. Cherry, and K. S. Pang, The multiple indicator dilution technique for characterization of normal and retrograde flow in once-through rat liver perfusions.Hepatology (in press).
R. Hems, B. D. Ross, M. N. Berry, and H. A. Krebs. Gluconeogenesis in the perfused rat liver.Biochem. J. 101:284–292 (1966).
G. M. M. Groothuis, K. P. T. Keulemans, M. J. Hardonk, and D. K. Meijer. Acinar heterogeneity in hepatic transport of dibromosulfophthalein and ouabain studied by autoradiography, normal and retrograde perfusions and computer simulations.Biochem. Pharmacol. 32:3069–3078 (1983).
J. R. Dawson, J. G. Weitering, G. J. Mulder, R. N. Stillwell, and K. S. Pang. Alteration of transit time and direction of flow to probe the heterogeneous distribution of conjugating activities for harmol in the perfused rat liver preparation.J. Pharmacol. Exp. Ther. 234:691–697 (1985).
E. H. Chen, J. J. Gumucio, N. H. Ho, and D. L. Gumucio. Hepatocytes of zones 1 and 3 conjugate sulfobromophthalein with glutathione.Hepatology 4:467–476 (1984).
K. S. Pang, J. A. Terrell, S. D. Nelson, K. F. Feuer, M. J. Clements, and L. Endrenyi. An enzyme-distributed system for lidocaine metabolism in the perfused rat liver preparation.J. Pharmacokin. Biopharm. 14:107–130 (1986).
G. M. M. Groothuis, M. J. Hardonk, K. P. T. Keulemans, P. Nieuwenhuis and D. K. F. Meijer. Autoradiogfaphic and kinetic demonstration of acinar heterogeneity for taurocholate transport.Am. J. Physiol. 243:G455-G462 (1982).
D. Häussinger and W. Gerok. Functional hepatocyte heterogeneity: The intracellular glutamate cycle, its regulation and physiologic significance.J. Hepatol. 1:1–12 (1985).