Comparison theorems for the volume of a geodesic ball with a product of space forms as a model
Tóm tắt
We prove two comparison theorems for the volume of a geodesic ball in a Riemannian manifold taking as a model a geodesic ball in a product of two space forms.
Tài liệu tham khảo
BISHOP, R.L.: “A relation between volume, mean curvature and diameter”, Amer. Math Soc. Notices10 (1963), 364.
BISHOP, R.L. and CRITTENDEN, R.H.: “Geometry of manifolds”. Academic Press, New York (1964)
BERGER, M.; GAUDUCHON, P. and MAZET, E.: “Le Spectre d'une variété Riemannienne”. Lecture Notes in Math.194, Springer Verlag, Berlin-New York (1971)
BIRKHOFF, G. and ROTA, G.C.: “Ordinary differential equations”. John Wiley, New York (1959)
DO CARMO, M.: “Riemannian Geometry”. Birkhäuser, Boston (1992)
GRAY, A.: “Tubes” Addison-Wesley, New York (1990)
GRAY, A.: “Geodesic balls in Riemannian product manifolds” in Diferential Geometry and Relativity, edited by S.S. M. Cahen and M. Flato, D. Reidel P.C., Mathematical Phys. and Appl. Math., Vol.3, (1976), 63–66
GRAY, A. and LEE, S.Y.: “Product formulas for tubes”. Proceedings of the Conference on Differential Geometry and its Applications, Part 1 (Nove Mesto na Morave, 1983), Charles Univ., Prague, (1984) 77–85.
GÜNTHER, P.: “Einige Sätze über das Volumenelement eines Riemannischen Raumes”, Pub. Math. Debrecen7 (1960), 78–93.
LEE, S.Y.: “Product tube formulas” Illinois J. Math.33 (1989) 153–161.
MIQUEL, V. and PALMER, V.: “Lower bounds for the mean curvature of hollow tubes around complex hypersurfaces and totally real submanifolds”. To appear in Illinois J. Math.