Comparison theorems for deformation functors via invariant theory
Tóm tắt
Từ khóa
Tài liệu tham khảo
Altmann, K.: Minkowski sums and homogeneous deformations of toric varieties. Tohoku Math. J. (2) 47(2), 151–184 (1995)
Altmann, K.: One parameter families containing three-dimensional toric-Gorenstein singularities. In: Explicit Birational Geometry of 3-folds, London Mathemtical Society, Lecture Note Series, vol. 281, pp. 21–50, Cambridge University Press, Cambridge (2000)
Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings, Cambridge Studies in Advanced Mathematics, vol. 144. Cambridge University Press, Cambridge (2015)
Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3(3), 493–535 (1994)
Batyrev, V.V., Cox, D.A.: On the Hodge structure of projective hypersurfaces in toric varieties. Duke Math. J. 75(2), 293–338 (1994)
Ballico, E., Ellia, P.: The maximal rank conjecture for nonspecial curves in ${ P}^3$. Invent. Math. 79(3), 541–555 (1985)
Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry, Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Philadelphia (1999)
Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties, Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Philadelphia (2011)
Cox, D.A.: The homogeneous coordinate ring of a toric variety. J. Algebr. Geom. 4(1), 17–50 (1995)
Dolgachev, I.: Weighted Projective Varieties, Group Actions and Vector Fields (Vancouver, B.C., 1981), Lecture Notes in Mathematics, vol. 956, pp. 34–71. Springer, Berlin 1982 (1981)
Eisenbud, D., Mustaţǎ, M., Stillman, M.: Cohomology on toric varieties and local cohomology with monomial supports. J. Symb. Comput. 29(4–5), 583–600 (2000)
Fantechi, B., Manetti, M.: Obstruction calculus for functors of Artin rings, I. J. Algebra 202, 541–576 (1998)
Geramita, A.V., Maroscia, P., Roberts, L.G.: The Hilbert function of a reduced $k$-algebra. J. Lond. Math. Soc. (2) 28(3), 443–452 (1983)
Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 4, Société Mathématique de France, Paris (2005)
Hartshorne, R.: Local Cohomology. A seminar given by A. Grothendieck, Harvard Univ., Fall 1961. Springer Lecture Notes in Mathematics, vol. 41. Springer, Berlin (1967)
Hartshorne, R.: Deformation Theory. Graduate Texts in Mathematics, vol. 257. Springer, New York (2010)
Illusie, L.: Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239. Springer, Berlin (1971)
Kleppe, J.O.: The smoothness and the dimension of ${\rm PGor}(H)$ and of other strata of the punctual Hilbert scheme. J. Algebra 200(2), 606–628 (1998)
Laudal, O.A.: Formal Moduli of Algebraic Structures. Lecture Notes in Mathematics, vol. 754. Springer, Berlin (1979)
Lichtenbaum, S., Schlessinger, M.: The cotangent complex of a morphism. Trans. Am. Math. Soc. 128, 41–70 (1967)
Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergeb. Math. Grenzgebiete, vol. 34, 3rd edn. Springer, Berlin (1994)
Mukai, S.: An Introduction to Invariants and Moduli. Cambridge Studies in Advanced Mathematics, vol. 81. Cambridge University Press, Cambridge (2003)
Piene, R., Schlessinger, M.: On the Hilbert scheme compactification of the space of twisted cubics. Am. J. Math. 107, 761–774 (1985)
Rim, D.S.: Equivariant $G$-structure on versal deformations. Trans. Am. Math. Soc. 257(1), 217–226 (1980)
Schlessinger, Michael: On rigid singularities. In: Proceedings of the Conference on Complex Analysis, Rice University Studies, vol. 59, pp. 147–162 (1973)
Sernesi, E.: Deformations of Algebraic Schemes. Springer, Berlin (2006)
Stevens, J.: On canonical singularities as total spaces of deformations. Abh. Math. Sem. Univ. Hamburg 58, 275–283 (1988)