Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III

American Journal of Botany - Tập 94 Số 3 - Trang 275-288 - 2007
Joey Shaw1,2, Edgar B. Lickey1,2, Edward E. Schilling1,2, Randall L. Small1,2
1Department of Biological and Environmental Sciences, 615 McCallie Avenue, University of Tennessee, Chattanooga, Tennessee 37403 USA
2Department of Ecology and Evolutionary Biology, 442 Hesler Biology, University of Tennessee, Knoxville, Tennessee 37996 USA

Tóm tắt

Although the chloroplast genome contains many noncoding regions, relatively few have been exploited for interspecific phylogenetic and intraspecific phylogeographic studies. In our recent evaluation of the phylogenetic utility of 21 noncoding chloroplast regions, we found the most widely used noncoding regions are among the least variable, but the more variable regions have rarely been employed. That study led us to conclude that there may be unexplored regions of the chloroplast genome that have even higher relative levels of variability. To explore the potential variability of previously unexplored regions, we compared three pairs of single‐copy chloroplast genome sequences in three disparate angiosperm lineages: Atropa vs. Nicotiana (asterids); Lotus vs. Medicago (rosids); and Saccharum vs. Oryza (monocots). These three separate sequence alignments highlighted 13 mutational hotspots that may be more variable than the best regions of our former study. These 13 regions were then selected for a more detailed analysis. Here we show that nine of these newly explored regions (rpl32‐trnL(UAG), trnQ(UUG)5′rps16, 3′trnV(UAC)ndhC, ndhF‐rpl32, psbD‐trnT(GGU), psbJ‐petA, 3′rps16–5′trnK(UUU), atpI‐atpH, and petL‐psbE) offer levels of variation better than the best regions identified in our earlier study and are therefore likely to be the best choices for molecular studies at low taxonomic levels.

Từ khóa


Tài liệu tham khảo

10.1046/j.1095-8339.2003.t01-1-00158.x

Barkman T. J., 2002, Hybrid origin and parentage of Dendrochilum acuiferum (Orchidaceae) inferred in a phylogenetic context using nuclear and plastid DNA sequence data, Systematic Botany, 27, 209

10.1046/j.1365-294x.1998.00466.x

10.1093/bioinformatics/bti1200

10.1073/pnas.91.15.6795

Curtis S. E., 1984, Molecular evolution of chloroplast DNA sequences, Molecular Biology and Evolution, 1, 291

10.1007/s00122-006-0254-x

10.2307/4135500

10.1007/978-1-4615-3276-7_1

10.1007/s10592-005-9073-x

10.1007/978-1-4899-1751-5_4

Gielly L., 1994, The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences, Molecular Biology and Evolution, 11, 769

10.1006/mpev.1993.1006

10.1016/S1055-7903(02)00022-2

10.1098/rspb.2002.2218

10.1139/g05-093

10.1111/j.1365-2699.2004.01082.x

10.1098/rstb.2005.1735

10.1016/j.ympev.2005.12.003

10.1080/14620316.2003.11511612

10.1073/pnas.0503123102

Levinson G., 1987, Slipped‐strand mispairing: a major mechanism for DNA sequence evolution, Molecular Biology and Evolution, 4, 203

Loayza M. D., 2005, Phragmipedium kovachii: molecular systematics of a new world orchid, Orchids, 72, 132

10.1007/BF00336789

10.1007/BF00351728

10.1002/j.1537-2197.1994.tb15615.x

10.1007/s00239-002-2333-y

10.1600/0363644054223648

10.1111/j.1471-8286.2004.00636.x

10.1021/jf0514569

10.1016/j.tree.2005.10.019

10.1111/j.1365-2699.2006.01462.x

10.1111/j.1365-294X.2006.02821.x

10.1111/j.1471-8286.2004.00635.x

10.3732/ajb.92.1.142

10.3732/ajb.92.12.2011

10.2307/2446640

10.1111/j.1095-8339.2003.00265.x

10.1007/BF00037152

10.1007/s00122-005-1990-z

10.1111/j.1365-294X.2005.02462.x

Thompson J. D. Higgins D. G. Gibson T. J.2001.ClustalXComputer program available atftp://ftp://ftp‐igbmc.u‐strasbg.fr/pub/clustalx/.

10.3732/ajb.94.3.302

10.1023/A:1007564209282

10.1111/j.1096-0031.2003.00008.x

10.1093/jhered/esl001

Wolfe K. H., 1991, Cell culture and somatic cell genetics of plants, vol. 7B, 467

10.1073/pnas.84.24.9054

10.1007/s00122-004-1588-x

10.3732/ajb.92.11.1887