Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
So sánh các phương pháp ước lượng liều lượng radon tại các nơi làm việc ngầm trong ngành sản xuất rượu vang
Tóm tắt
Mức độ radon đã được khảo sát trong không khí tại các nơi làm việc ngầm của tám nhà máy rượu vang lớn ở Slovenia. Giá trị trung bình hình học và độ lệch chuẩn hình học lần lượt thu được bằng các thiết bị khác nhau là 81 Bq m−3 và 2.3 với các tế bào lấp lánh alpha, 114 Bq m−3 và 2.0 bằng cách sử dụng các bộ phát hiện đường khắc phơi sáng trong khoảng 1–5 tháng, và 183 Bq m−3 và 2.6 từ các phép đo liên tục trong 1–4 tuần. Hệ số cân bằng là 0.25–0.67, và phần trăm không gắn kết của các sản phẩm phân rã ngắn hạn của radon nằm trong khoảng 0.09–0.20. Các liều hiệu dụng đã được tính toán và so sánh dựa trên dữ liệu radon thu được từ các kỹ thuật khác nhau.
Từ khóa
#radon #liều hiệu dụng #nơi làm việc ngầm #sản xuất rượu vang #phương pháp đo lườngTài liệu tham khảo
Nero AV (1988) Radon and its decay products in indoor air: an overview. In: Nazaroff WW, Nero AV Jr (eds) Radon and its decay products in indoor air. Wiley, New York, pp 1–53
Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129:185–204
Goldstein SD, Hopke PK (1985) Environmental neutralisation of polonium-218. Environ Sci Technol 19:146–150
Butterweck G, Porstendörfer J, Reineking A, Kesten J (1992) Unattached fraction and the aerosol size distribution of the radon progeny in a natural cave and mine atmosphere. Radiat Prot Dosimetry 45:167–170
James AC (1988) The basis for health concern. In: Nazaroff WW, Nero AV Jr (eds) Radon and its decay products in indoor air. Wiley, New York, pp 259–309
Hofmann W, Heistracher T, Balásházy I (1996) Deposition patterns of inhaled radon decay products in human bronchial airway bifurcation. Environ Int 22(Suppl 1):S935–S940
Hofmann W, Mainelis M, Mohamed A, Balásházy I, Vaupotič J, Kobal I (1996) Comparison of different modeling approaches in current lung dosimetry models. Environ Int 22(Suppl 1):S965–S976
Porstendörfer J (2002) Influence of physical parameters on doses from radon exposures. Int Congr Ser 1225:149–160
ICRP (1994) Recommendations of the International Commission on Radiological Protection. Protection against Radon-222 at Home and at Work. ICRP Publication 65, Pergamon, Oxford
Birchall A, James AC (2004) Uncertainty analysis of the effective dose per unit exposure from radon progeny and implication for ICRP risk-weighting factor. Radiat Prot Dosimetry 53:133–140
Hofmann W, Fakir H, Aubieneau-Laniece I, Pihet P (2004) Interaction of alpha particles at cellular level—implications for the radiation weighting factor. Radiat Prot Dosimetry 112:493–500
Porstendörfer J (1996) Radon: measurements related to dose. Environ Int 22(Suppl 1):S563–S58
Marsh JW, Birchall A, Butterweck G, Dorrian M-D, Huet C, Ortega X, Reineking A, Tymen G, Schuler Ch, Vargas A, Vezzu G, Wendt J (2002) Uncertainty analysis of the weighted equivalent lung dose per unit exposure from radon progeny in the home. Radiat Prot Dosimetry 102:229–24
ICRP (1994) Recommendations of the International Commission on Radiological Protection. Human Respiratory Tract Model for Radiological Protection, ICRP Publication 66. Pergamon, Oxford
IAEA (1994) Recommendation of the International Atomic Energy Agency. Radiation protection against radon at workplaces other than mines. A draft of the document prepared by the IAEA Advisory Group Meeting, Vienna, December 1994
CEU (1996) Recommendations of the Council of the European Union. Laying down basic safety standards for the protection of health of workers and the general public against the dangers arising from ionising radiation. Council Directive 96/29/EURATOM. Official J European Commun No L 159:1–18
Field SM (2007) Risk to cavers and cave workers from exposure to low-level ionizing α radiation from 222Rn decay in caves. J Cave Karst Stud (in press)
Trautmannsheimer M, Schindlmeier W, Börner K (2003) Radon concentration measurements and personnel exposure levels in Bavarian water supply facilities. Health Phys 84:100–110
Stueber J, Wisser S, Wilken R-D (2000) Increased levels of radon and its decay products in the indoor air of waterworks due to application of different water treatment methods. In: Proceedings, 5th international conference on high levels of natural radiation and radon areas: radiation dose and health effects. 4–7 September 2000, München, Germany. Federal Office of Radiation Protection (BfS, Institute of Radiation Hygiene)
Vaupotič J (2002) Radon exposure at drinking water supply plants in Slovenia. Health Phys 83:901–906
Wiegand K, Dunne SP (1996) Radon in the workplace—a study of occupational exposure in BT underground structures. Am Occup Hyg 40:569–581
Szerbin P, Vaupotič J, Csige I, Kobal I, Hunyadi I, Juhász L, Baradács E (2005) Radioactivity in wine cellars in Hungary and Slovenia. Int Congr Ser 1276:362–364
Vaupotič J, Ančik M, Škofljanec M, Kobal I (1992) Alpha scintillation cell for direct measurement of indoor radon. J Environ Sci Health A27:1535–1540
Rushing DA, Garcia WJ, Clark DA (1964) Analysis of effluents and environmental samples. In: IAEA (International Atomic Energy Agency) Symposium on Radiological Health and Safety in Mining and Milling of Nuclear Materials, 12–16 October 1963. Vienna, Austria
Kristan J, Kobal I (1973) A modified scintillation cell for the determination of radon in uranium mine atmosphere. Health Phys 24:103–104
Urban M, Schmitz J (1993) Radon and radon daughters metrology: basic aspects. In: Proceedings, 5th international symposium on the natural radiation environment, tutorial sessions. Report EUR 14411 EN
Markov KR, Ryabov NV, Stas KN (1962) A rapid method to assess radiation hazard due to radon short-lived decay products. At Energy 12:315–22
Križman M (2001) Report on the Intercomparison Experiment for Radon and Progeny in Air. URSJV RP 47/2001; Slovene Nuclear Safety Administration, Ljubljana, Slovenia
Vaupotič J, Kobal I (2006) Radon survey and exposure assessment in hospitals. Radiat Prot Dosimetry 121:158–167
Popit A, Vaupotič J (2002) Indoor radon concentrations in relation to geology in Slovenia. Environ Geol (Berlin) 42:330–337
Žvab P, Vaupotič J, Dolenec T (2006) Reasons for elevated radon levels inside the building in Divača. Geologija (Ljublajna) 49:409–415
Vaupotič J (2007) Nanosize radon short-lived progeny aerosols in Slovenian kindergartens in wintertime. Chemosphere 69:856–863
Vaupotic J (2008) Nanosize radon short-lived decay products in the air of the Postojna Cave. Sci Total Environ 393:27–38
Vaupotič J (2002) Do long-term average radon concentrations in schools and kindergartens differ from the average during working hours? Health Phys 83:237–242
Vaupotič J, Kobal I (2006) Effective doses in schools based on nanosize radon progeny aerosols. Atmos Environ 40:7494–7507
Stather JW (2004) Dosimetric and epidemiologic approach to assessing radon doses—can the difference be reconciled? Radiat Prot Dosimetry 112:487–492
Vaupotič J, Planinić J, Kobal I (1998) Long-term radon investigation in four selected kindergartens in different geological and climate regions of Slovenia. J Radioanal Nucl Chem 238:61–66
UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR 2000 Report to the General Assembly, with scientific annexes
ULRS (2003) Rules on the requirements and methodology of dose assessment for the radiation proetction of the population and exposed workers. Official gazette of Slovenia ULRS 115/2003