Comparison of time series and mechanistic models of vector-borne diseases
Tài liệu tham khảo
Abdelrazec, 2017, “Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics,”, J. Math. Biol., 74, 1351, 10.1007/s00285-016-1054-9
Andraud, 2012, “Dynamic Epidemiological Models for Dengue Transmission: a Systematic Review of Structural Approaches,”, PLoS ONE, 7, e49085, 10.1371/journal.pone.0049085
Baquero, 2018, “Dengue forecasting in Sao Paulo city with generalised additive models, artificial neural networks and seasonal autoregressive integrated moving average models,”, PLoS ONE, 13, 10.1371/journal.pone.0195065
Barrios, 2018, “Assessing the effects of daily commuting in two-patch dengue dynamics: a case study of Cali, Colombia,”, J. Theor. Biol., 453, 14, 10.1016/j.jtbi.2018.05.015
Beck-Johnson, 2013, “The Effect of Temperature on Anopheles Mosquito Population Dynamics and the Potential for Malaria Transmission,”, PLoS ONE, 8, e79276, 10.1371/journal.pone.0079276
Chakraborty, 2019, “Forecasting dengue epidemics using a hybrid methodology,”, Physica A, 527, 10.1016/j.physa.2019.121266
Champagne, 2019, “Comparison of stochastic and deterministic frameworks in dengue modelling,”, Math. Biosci., 310, 1, 10.1016/j.mbs.2019.01.010
Champagne, 2018, “Dengue modeling in rural Cambodia: statistical performance versus epidemiological relevance,”, Epidemics
Chanprasopchai, 2018, “SIR Model for Dengue Disease with Effect of Dengue Vaccination,”, Comput. Math. Methods Med., 2018, 1, 10.1155/2018/9861572
Cortes, 2018, “Time series analysis of dengue surveillance data in two Brazilian cities,”, Acta Trop., 182, 190, 10.1016/j.actatropica.2018.03.006
Dantas, 2018, “Calibration of a SEIR SEI epidemic model to describe the Zika virus outbreak in Brazil,”, Appl. Math. Comput., 338, 249, 10.1016/j.amc.2018.06.024
Enduri, 2018, “Dynamics of dengue disease with human and vector mobility,”, Spat. Spatiotemporal. Epidemiol., 25, 57, 10.1016/j.sste.2018.03.001
Erickson, 2010, “A dengue model with a dynamic Aedes albopictus vector population,”, Ecol. Modell., 221, 2899, 10.1016/j.ecolmodel.2010.08.036
Erickson, 2010, “A stage-structured, Aedes albopictus population model,”, Ecol. Modell., 221, 1273, 10.1016/j.ecolmodel.2010.01.018
Esteva, 1998, “Analysis of a dengue disease transmission model,”, Math. Biosci., 150, 131, 10.1016/S0025-5564(98)10003-2
Getz, 2018, “Modeling epidemics: a primer and Numerus Model Builder implementation,”, Epidemics, 25, 9, 10.1016/j.epidem.2018.06.001
Gluskin, 2014, “Evaluation of Internet-Based Dengue Query Data: google Dengue Trends,”, PLoS Negl. Trop. Dis., 8, e2713, 10.1371/journal.pntd.0002713
Guo, 2019, “An ensemble forecast model of dengue in Guangzhou, China using climate and social media surveillance data,”, Sci. Total Environ., 647, 752, 10.1016/j.scitotenv.2018.08.044
Hoshen, 2004, “A weather-driven model of malaria transmission,”, Malar. J., 14
JD, 1994
Lasluisa, 2019, "Optimal Strategies for Dengue Prevention and Control during Daily Commuting between Two Residential Areas,", Processes, 7, 197, 10.3390/pr7040197
Latorre MRDO, 2001, “Time series analysis in epidemiology: an introduction to methodological aspects,”, Rev. Bras. Epidemiol., 4, 145
Medeiros, 2011, “Modeling the Dynamic Transmission of Dengue Fever: investigating Disease Persistence,”, PLoS Negl. Trop. Dis., 5, e942, 10.1371/journal.pntd.0000942
Mordecai, 2013, “Optimal temperature for malaria transmission is dramatically lower than previously predicted,”, Ecol. Lett., 16, 22, 10.1111/ele.12015
NOAA, "NOAADengue; http://dengueforecasting.noaa.gov/; access 09/01/2019," Jan. 2019.
S. P. for Research and Training in Tropical Diseases and W. H. Organization, eds., Dengue: guidelines for diagnosis, treatment, prevention, and control. Geneva: TDR: World Health Organization, new ed ed., 2009.
Santos, 2019, “Correlation of dengue incidence and rainfall occurrence using wavelet transform for JoÃco Pessoa city,”, Sci. Total Environ., 647, 794, 10.1016/j.scitotenv.2018.08.019
Sena, 2015, “Correlation of climate variability and malaria: a retrospective comparative study, Southwest Ethiopia,”, Ethiop. J. Health Sci., 25, 129, 10.4314/ejhs.v25i2.5
Smith, 2012, “Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens,”, PLoS Pathog., 8, 10.1371/journal.ppat.1002588
Solle, 2017, “Between the Poles of Data-Driven and Mechanistic Modeling for Process Operation,”, Chem. Ing. Tech., 89, 542, 10.1002/cite.201600175
Tran, 2006, “On the dynamics of dengue epidemics from large-scale information,”, Theor. Popul. Biol., 69, 3, 10.1016/j.tpb.2005.06.008
van Panhuis, 2014, “Risk of Dengue for Tourists and Teams during the World Cup 2014 in Brazil,”, PLoS Negl. Trop. Dis., 8, e3063, 10.1371/journal.pntd.0003063
Vellore, 2018, "Robust Regression Model for Prediction and Forecasting of Dengue Fever Attacked in Rural Areas of Andhra Pradesh, India,", International Journal of Pure & Applied Bioscience, 6, 318, 10.18782/2320-7051.6034
Vontas, 2012, “Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti,”, Pestic. Biochem. Physiol., 104, 126, 10.1016/j.pestbp.2012.05.008
W. H. Organization, Vector-borne diseases; https://www.who.int/newsroom/fact-sheets/detail/vector-borne-diseases; access 28/1/2019.
Yamana, 2016, “Superensemble forecasts of dengue outbreaks,”, J. R. Soc., Interface, 13
Yusof, 2011, “Dengue Outbreak Prediction: a Least Squares Support Vector Machines Approach,”, Int. J. Comput. Theory Eng., 489, 10.7763/IJCTE.2011.V3.355