Comparison of time series and mechanistic models of vector-borne diseases

Spatial and Spatio-temporal Epidemiology - Tập 41 - Trang 100478 - 2022
Eduardo Vyhmeister1, Gregory Provan1, Blaine Doyle2, Brian Bourke2, Gabriel G. Castane1, Lorenzo Reyes-Bozo3
1Insight Research Centre, University College Cork, Cork, Ireland
2GlowDX, Dublin Ireland
3Universidad Autonoma de Chile, Santiago, Chile

Tài liệu tham khảo

Abdelrazec, 2017, “Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics,”, J. Math. Biol., 74, 1351, 10.1007/s00285-016-1054-9 Andraud, 2012, “Dynamic Epidemiological Models for Dengue Transmission: a Systematic Review of Structural Approaches,”, PLoS ONE, 7, e49085, 10.1371/journal.pone.0049085 Baquero, 2018, “Dengue forecasting in Sao Paulo city with generalised additive models, artificial neural networks and seasonal autoregressive integrated moving average models,”, PLoS ONE, 13, 10.1371/journal.pone.0195065 Barrios, 2018, “Assessing the effects of daily commuting in two-patch dengue dynamics: a case study of Cali, Colombia,”, J. Theor. Biol., 453, 14, 10.1016/j.jtbi.2018.05.015 Beck-Johnson, 2013, “The Effect of Temperature on Anopheles Mosquito Population Dynamics and the Potential for Malaria Transmission,”, PLoS ONE, 8, e79276, 10.1371/journal.pone.0079276 Chakraborty, 2019, “Forecasting dengue epidemics using a hybrid methodology,”, Physica A, 527, 10.1016/j.physa.2019.121266 Champagne, 2019, “Comparison of stochastic and deterministic frameworks in dengue modelling,”, Math. Biosci., 310, 1, 10.1016/j.mbs.2019.01.010 Champagne, 2018, “Dengue modeling in rural Cambodia: statistical performance versus epidemiological relevance,”, Epidemics Chanprasopchai, 2018, “SIR Model for Dengue Disease with Effect of Dengue Vaccination,”, Comput. Math. Methods Med., 2018, 1, 10.1155/2018/9861572 Cortes, 2018, “Time series analysis of dengue surveillance data in two Brazilian cities,”, Acta Trop., 182, 190, 10.1016/j.actatropica.2018.03.006 Dantas, 2018, “Calibration of a SEIR SEI epidemic model to describe the Zika virus outbreak in Brazil,”, Appl. Math. Comput., 338, 249, 10.1016/j.amc.2018.06.024 Enduri, 2018, “Dynamics of dengue disease with human and vector mobility,”, Spat. Spatiotemporal. Epidemiol., 25, 57, 10.1016/j.sste.2018.03.001 Erickson, 2010, “A dengue model with a dynamic Aedes albopictus vector population,”, Ecol. Modell., 221, 2899, 10.1016/j.ecolmodel.2010.08.036 Erickson, 2010, “A stage-structured, Aedes albopictus population model,”, Ecol. Modell., 221, 1273, 10.1016/j.ecolmodel.2010.01.018 Esteva, 1998, “Analysis of a dengue disease transmission model,”, Math. Biosci., 150, 131, 10.1016/S0025-5564(98)10003-2 Getz, 2018, “Modeling epidemics: a primer and Numerus Model Builder implementation,”, Epidemics, 25, 9, 10.1016/j.epidem.2018.06.001 Gluskin, 2014, “Evaluation of Internet-Based Dengue Query Data: google Dengue Trends,”, PLoS Negl. Trop. Dis., 8, e2713, 10.1371/journal.pntd.0002713 Guo, 2019, “An ensemble forecast model of dengue in Guangzhou, China using climate and social media surveillance data,”, Sci. Total Environ., 647, 752, 10.1016/j.scitotenv.2018.08.044 Hoshen, 2004, “A weather-driven model of malaria transmission,”, Malar. J., 14 JD, 1994 Lasluisa, 2019, "Optimal Strategies for Dengue Prevention and Control during Daily Commuting between Two Residential Areas,", Processes, 7, 197, 10.3390/pr7040197 Latorre MRDO, 2001, “Time series analysis in epidemiology: an introduction to methodological aspects,”, Rev. Bras. Epidemiol., 4, 145 Medeiros, 2011, “Modeling the Dynamic Transmission of Dengue Fever: investigating Disease Persistence,”, PLoS Negl. Trop. Dis., 5, e942, 10.1371/journal.pntd.0000942 Mordecai, 2013, “Optimal temperature for malaria transmission is dramatically lower than previously predicted,”, Ecol. Lett., 16, 22, 10.1111/ele.12015 NOAA, "NOAADengue; http://dengueforecasting.noaa.gov/; access 09/01/2019," Jan. 2019. S. P. for Research and Training in Tropical Diseases and W. H. Organization, eds., Dengue: guidelines for diagnosis, treatment, prevention, and control. Geneva: TDR: World Health Organization, new ed ed., 2009. Santos, 2019, “Correlation of dengue incidence and rainfall occurrence using wavelet transform for JoÃco Pessoa city,”, Sci. Total Environ., 647, 794, 10.1016/j.scitotenv.2018.08.019 Sena, 2015, “Correlation of climate variability and malaria: a retrospective comparative study, Southwest Ethiopia,”, Ethiop. J. Health Sci., 25, 129, 10.4314/ejhs.v25i2.5 Smith, 2012, “Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens,”, PLoS Pathog., 8, 10.1371/journal.ppat.1002588 Solle, 2017, “Between the Poles of Data-Driven and Mechanistic Modeling for Process Operation,”, Chem. Ing. Tech., 89, 542, 10.1002/cite.201600175 Tran, 2006, “On the dynamics of dengue epidemics from large-scale information,”, Theor. Popul. Biol., 69, 3, 10.1016/j.tpb.2005.06.008 van Panhuis, 2014, “Risk of Dengue for Tourists and Teams during the World Cup 2014 in Brazil,”, PLoS Negl. Trop. Dis., 8, e3063, 10.1371/journal.pntd.0003063 Vellore, 2018, "Robust Regression Model for Prediction and Forecasting of Dengue Fever Attacked in Rural Areas of Andhra Pradesh, India,", International Journal of Pure & Applied Bioscience, 6, 318, 10.18782/2320-7051.6034 Vontas, 2012, “Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti,”, Pestic. Biochem. Physiol., 104, 126, 10.1016/j.pestbp.2012.05.008 W. H. Organization, Vector-borne diseases; https://www.who.int/newsroom/fact-sheets/detail/vector-borne-diseases; access 28/1/2019. Yamana, 2016, “Superensemble forecasts of dengue outbreaks,”, J. R. Soc., Interface, 13 Yusof, 2011, “Dengue Outbreak Prediction: a Least Squares Support Vector Machines Approach,”, Int. J. Comput. Theory Eng., 489, 10.7763/IJCTE.2011.V3.355