Comparison of three retrievals of COSMIC GPS radio occultation results in the tropical upper troposphere and lower stratosphere
Tóm tắt
Combining geometrical optics (GO) and wave optics (WO), the COSMIC data analysis and archive center (CDAAC) retrieved two sets of dry atmosphere temperatures (T) from COSMIC GPS radio occultation (GPS-RO), which are called atmPrf2010 and atmPrf2013. In atmPrf2010, the sewing height between WO and GO varies between 10 and 20 km, but is fixed at 20 km for atmPrf2013. The height resolution of the atmPrf2010 depends on the sewing height, while the T profiles by atmPrf2013 are smoothed over 500 m. We also derived T by applying WO throughout the troposphere and the stratosphere up to a 30-km altitude, which is called rishfsi2013. The three retrievals have different characteristics in the height resolution around the tropopause. Therefore, we aim to examine a possible discrepancy in the statistical results of the cold-point tropopause (CPT) and the lapse rate tropopause (LRT) among the three datasets, conducting their inter-comparisons as well as the comparison between GPS-RO and the simultaneous radiosonde dataset. We investigate the T variations in the upper troposphere and lower stratosphere (UTLS) over the tropics from October 1, 2011, to March 31, 2012, when radiosonde soundings were conducted as the CINDY-DYNAMO 2011 campaign. The mean T profiles are consistent between atmPrf2010 and atmPrf2013, but rishfsi2013 results are colder (warmer) than the CDAAC retrievals below (above) the tropopause. The mean T difference between atmPrf2013 and atmPrf2010 is 0.17 K at the cold-point tropopause (CPT) and −0.38 K at the lapse rate tropopause (LRT). On the other hand, rishfsi2013 shows a colder T at CPT by −0.77 and −0.59 K relative to atmPrf2013 and atmPrf2010, respectively, and the warmer T by 0.60 and 0.20 Kd at LRT. During CINDY-DYNAMO, we found 134 radiosonde soundings that coincide with GPS-RO within ±3 h and are collocated within 200 km from GPS-RO. The mean T difference at CPT from the radiosondes is 0.32, 0.49 and −0.24 K for atmPrf2010, atmPrf2013 and rishfsi2013, respectively. Both atmPrf2013 and atmPrf2010 have a positive bias at CPT, while rishfsi2013 has a negative one. Similar comparisons at LRT are −0.45, −0.69 and −0.41 K, respectively, showing a negative bias for all GPS-RO retrievals. The results show that rishfsi2013 is consistent with the retrievals at CDAAC and the radiosondes. Due to its good height resolution, rishfsi2013 is useful for studies on mesoscale T perturbations in the UTLS.
Tài liệu tham khảo
Alexander SP, Tsuda T, Kawatani Y, Takahashi M (2008) Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere region: COSMIC observations of wave mean flow interactions. J Geophys Res 113:D24115. doi:10.1029/2008JD010039
Anthes RA (2011) Exploring earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos Meas Tech 4:1077–1103. doi:10.5194/amt-4-1077-2011
Anthes RA, Ector D, Hunt DC, Kuo YH, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Wee TK, Zeng Z, Bernhardt PA, Dymond KF, Chen Y, Liu H, Manning K, Randel WJ, Trenberth KE, Cucurull L, Healy SB, Ho SP, McCormick C, Meehan TK, Thompson DC, Yen NL (2008) The COSMIC/FORMOSAT-3 mission: early results. B Am Meteorol Soc 89:313–333
Das U, Pan CJ (2014) Validation of FORMOSAT-3/COSMIC level 2 “atmPrf” global temperature data in the stratosphere. Atmos Meas Tech 7:731–742. doi:10.5194/amt-7-731-2014
Fueglistaler SA, Dessler E, Dunkerton TJ, Folkins I, Fu Q, Mote PW (2009) The tropical tropopause layer. Rev Geophys 47:RG1004. doi:10.1029/2008RG000267
Gettelman A, Hoor P, Pan LL, Randel WJ, Hegglin MI, Birner T (2011) The extratropical upper troposphere and lower stratosphere. Rev Geophys 49:RG3003. doi:10.1029/2011RG0003555
Gorbunov ME (2002) Canonical transform method for processing radio occultation data in the lower troposphere. Radio Sci 37(5):1076. doi:10.1029/2000RS002592
Gorbunov ME, Lauritsen KB (2004) Analysis of wave fields by Fourier integral operators and their application for radio occultations. Radio Sci 39:RS4010. doi:10.1029/2003RS002971
Gubenko VN, Pavelyev AG, Salimzyanov RR, Pavelyev AA (2011) Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the earth’s atmosphere. Atmos Meas Tech 4:2153–2162. doi:10.5194/amt-4-2153-2011
Jensen AS, Lohmann MS, Benzon H, Nielsen AS (2003) Full spectrum inversion of radio occultation signals. Radio Sci 38(3):1040. doi:10.1029/2002RS002763
Jensen AS, Lohmann MS, Nielsen AS, Benzon H (2004) Geometrical optics phase matching of radio occultation signals. Radio Sci 39:RS3009. doi:10.1029/2003RS002899
Kim J, Son S-W (2012) Tropical cold-point tropopause: climatology, seasonal cycle and intraseasonal variability derived from COSMIC GPS radio occultation measurements. J Clim 25:5343–5360. doi:10.1175/JCLI-D-11-00554.1
Kitchen M (1989) Representativeness errors for radiosonde observations. QJR Meteorol Soc 115:673–700
Kuo Y-H, Wee TK, Sokolovskiy S, Rocken C, Schreiner W, Hunt D, Anthes RA (2004) Inversion and error estimation of GPS radio occultation data. J Meteorol Soc Jpn 82:507–531
Kuo Y-H, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS radio occultation soundings with radiosondes. Geophys Res Lett 32:L05817. doi:10.1029/2004GL021443
Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res 102:23429–23465. doi:10.1029/97JD01569
Ladstädter F, Steiner AK, Schwärz M, Kirchengast G (2015) Climate intercomparison of GPS radio occultation, RS 90/92 radiosondes and GRUAN from 2002 to 2013. Atmos Meas Tech 8:1819–1834. doi:10.5194/amt-8-1819-2015
Melbourne WG (2004) Radio occultations using earth satellites. Wiley, New Jersey
Scherllin-Pirscher B, Kirchengast G, Steiner AK, Kuo Y-H, Foelsche U (2011) Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model. Atmos Meas Tech 4:2019–2034. doi:10.5194/amt-4-2019-2011
Scherllin-Pirscher B, Randel WJ, Kim J (2017) Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS-RO measurements. Atmos Chem Phys 17:793–806. doi:10.5194/acp-17-793-2017
Schreiner W, Sokolovskiy S, Hunt D, Rocken C, Kuo Y-H (2011) Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC. Atmos Meas Tech 4:2255–2272. doi:10.5194/amt-4-2255-2011
Sofieva VF, Dalaudier FR, Kiwi R, Kyro E (2008) On the variability of temperature profiles in the stratosphere: implications for validation. Geophys Res Lett 35:L23808. doi:10.1029/2008GL035539
Sokolovskiy S, Schreiner W, Rocken C, Hunt D (2009) Optimal noise filtering for the ionospheric correction of GPS radio occultation signals. J Atmos Ocean Tech 26:1398–1403
Sokolovskiy S, Rocken C, Schreiner W, Hunt D (2010) On the uncertainty of radio occultation inversions in the lower troposphere. J Geophys Res 115:D22111. doi:10.1029/2010JD014058
Sokolovskiy SV, Schreiner WS, Zeng Z, Hunt DC, Kuo Y-H, Meehan TK, Stecheson TW, Mannucci AJ, Ao CO (2014) Use of the L2C signal for inversions of GPS radio occultation data in the neutral atmosphere. GPS Solut 18:405–416. doi:10.1007/s10291-013-0340-x
Steiner AK, Lackner BC, Ladstädter F, Scherllin-Pirscher B, Foelsche U, Kirchengast G (2011) GPS radio occultation for climate monitoring and change detection. Radio Sci 46:RS0D24. doi:10.1029/2010RS004614
Sun B, Reale A, Seidel DJ, Hunt DC (2010) Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J Geophys Res 115:D23104. doi:10.1029/2010JG014457
Suzuki J, Fujiwara M, Nishizawa T, Shirooka R, Yoneyama K, Katsumata M, Matsui I, Sugimoto N (2013) Theoccurrence of cirrus clouds associated with eastward propagating equatorial n = 0 inertio-gravity and Kelvin waves in November 2011 during the CINDY2011/DYNAMO campaign. J Geophys Res 118:12941–12947. doi:10.1002/2013JD019960
Tsuda T, Lin X, Hayashi H, Noersomadi N (2011) Analysis of vertical wave number spectrum of atmospheric gravity waves in the stratosphere using COSMIC GPS radio occultation data. Atmos Meas Tech 4:1627–1636. doi:10.5194/amt-4-1627-2011
Wang B-R, Liu X-Y, Wang J-K (2013) Assessment of COSMIC radio occultation retrieval product using global radiosonde data. Atmos Meas Tech 6:1073–1083. doi:10.5194/amt-6-1073-2013
Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Kuo Y, Meehan T, Melbourne W, Rocken C, Schreiner W, Sokolovskiy S, Solheim F, Zou AR, Businger S, Trenbeth K (1996) GPS sounding of the atmosphere from low Earth orbit—preliminary results. Bull Am Meteorol Soc 77:19–40
Xu X, Gao P, Zhang X (2014) Global multiple tropopause features derived from COSMIC radio occultation data during 2007 to 2012. J Geophys Res Atmos 119:8515–8534. doi:10.1002/2014JD021620
Yoneyama K, Zhang C, Long CN (2013) Tracking pulses of the Madden–Julian oscillation. Bull Am Meteorol Soc. doi:10.1175/bams-d-12-00157.1
Zeng Z, Sokolovskiy S, Schreiner W, Hunt D, Lin J, Kuo Y-H (2016) Ionospheric correction of GPS radio occultation data in the troposphere. Atmos Meas Tech 9:335–346. doi:10.5194/amt-9-335-2016
Zhang C, Gottschalck J, Maloney ED, Moncrieff MW, Vitart F, Waliser DE, Wang B, Wheeler MC (2013) Cracking the MJO nut. Geophys Res Lett 40:1223–1230. doi:10.1002/grl.50244