Comparison of the local front reconstruction method with a diffuse interface model for the modeling of droplet collisions

Chemical Engineering Science: X - Tập 7 - Trang 100066 - 2020
A.H. Rajkotwala1, E.J. Gelissen2, E.A.J.F. Peters1, M.W. Baltussen1, C.W.M. van der Geld3, J.G.M. Kuerten2, J.A.M. Kuipers1
1Multiphase Reactors Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
2Power and Flow Group, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
3Interfaces with Mass Transfer Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

Tài liệu tham khảo

Anderson, 1998, Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30, 139, 10.1146/annurev.fluid.30.1.139 Ashgriz, 1990, Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech., 221, 183, 10.1017/S0022112090003536 Brenn, 2006, Satellite droplet formation by unstable binary drop collisions, Phys. Fluids, 18, 087101, 10.1063/1.2225363 Cahn, 1959, Free energy of a nonuniform system. II. thermodynamic basis, J. Chem. Phys., 30, 1121, 10.1063/1.1730145 Cockburn, 1996, model numerical scheme for the propagation of phase transitions in solids, SIAM J. Sci. Comput., 17, 1092, 10.1137/S106482759426688X Das, 2017, Immersed boundary method (IBM) based direct numerical simulation of open-cell solid foams: Hydrodynamics, AIChE J., 63, 1152, 10.1002/aic.15487 Dijkhuizen, 2010, DNS of gas bubbles behaviour using an improved 3D front tracking model-model development, Chem. Eng. Sci., 65, 1427, 10.1016/j.ces.2009.10.022 Dunn, 1985, On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88, 95, 10.1007/BF00250907 Estrade, 1999, Experimental investigation of dynamic binary collision of ethanol droplets–a model for droplet coalescence and bouncing, Int. J. Heat Fluid Flow, 20, 486, 10.1016/S0142-727X(99)00036-3 Finotello, 2017, Effect of viscosity on droplet-droplet collisional interaction, Phys. Fluids, 29, 067102, 10.1063/1.4984081 Gelissen, 2018, Simulations of droplet collisions with a diffuse interface model near the critical point, Int. J. Multiph. Flow, 107, 208, 10.1016/j.ijmultiphaseflow.2018.06.001 Gotaas, 2007, Effect of viscosity on droplet-droplet collision outcome: Experimental study and numerical comparison, Phys. Fluids, 19, 102106, 10.1063/1.2781603 Kwakkel, 2013, Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model, J. Comput. Phys., 253, 166, 10.1016/j.jcp.2013.07.005 Mason, 2012, Multi-scale volume of fluid modelling of droplet coalescence Mirsandi, 2018, Numerical simulation of bubble formation with a moving contact line using local front reconstruction method, Chem. Eng. Sci., 187, 415, 10.1016/j.ces.2018.04.048 Nikolopoulos, 2009, numerical investigation of central binary collision of droplets, Comput. Fluids, 38, 1191, 10.1016/j.compfluid.2008.11.007 Nikolopoulos, 2009, Off-centre binary collision of droplets: A numerical investigation, Int. J. Heat Mass Transf., 52, 4160, 10.1016/j.ijheatmasstransfer.2009.04.011 Nobari, 1996, Head-on collision of drops – a numerical investigation, Phys. Fluids, 8, 29, 10.1063/1.868812 Pairam, 2009, Generation and stability of toroidal droplets in a viscous liquid, Phys. Rev. Lett., 102, 234501, 10.1103/PhysRevLett.102.234501 Pan, 2005, Numerical simulation of binary liquid droplet collision, Phys. Fluids, 17, 082105, 10.1063/1.2009527 Pan, 2008, Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision, J. Appl. Phys., 103, 6, 10.1063/1.2841055 Papatzacos, 2000, Diffuse-interface models for two-phase flow, Phys. Scr., 61, 349, 10.1238/Physica.Regular.061a00349 Pecenko, 2011, Non-isothermal two-phase flow with a diffuse-interface model, Int. J. Multiph. Flow, 37, 149, 10.1016/j.ijmultiphaseflow.2010.09.011 Qian, 1997, Regimes of coalescence and separation in droplet collision, J. Fluid Mech., 331, 59, 10.1017/S0022112096003722 Rajkotwala, 2018, Extension of local front reconstruction method with controlled coalescence model, Phys. Fluids, 30, 022102, 10.1063/1.5008371 Schwarzkopf, 2011 Shin, 2011, The local front reconstruction method for direct simulation of two- and three-dimensional multiphase flows, J. Comput. Phys., 230, 6605, 10.1016/j.jcp.2011.04.040 Shu, 1988, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439, 10.1016/0021-9991(88)90177-5 Tonini, 2009, The role of droplet fragmentation in high-pressure evaporating diesel sprays, Int. J. Therm. Sci., 48, 554, 10.1016/j.ijthermalsci.2008.03.020 Willis, 2003, Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity, Exp. Fluids, 34, 28, 10.1007/s00348-002-0526-4 Yue, 2004, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515, 293, 10.1017/S0022112004000370 Zhang, 2011, An analysis of head-on droplet collision with large deformation in gaseous medium, Phys. Fluids, 23, 042102, 10.1063/1.3580754