So sánh hiệu quả của ketamine và fentanyl-midazolam-medetomidine để gây mê cho khỉ Rhesus (Macaca mulatta)

Springer Science and Business Media LLC - Tập 12 - Trang 1-9 - 2016
Henri G. M. J. Bertrand1,2, Yvette C. Ellen1,3, Stevie O’Keefe1, Paul A. Flecknell1,4
1Comparative Biology Centre, Newcastle University, Newcastle Upon Tyne, UK
2Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
3School of Veterinary Medicine and Science, University of Nottingham, Loughborough, UK
4Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK

Tóm tắt

Nghiên cứu này đánh giá tác động của việc gây mê bằng sự kết hợp giữa fentanyl, midazolam và medetomidine so với ketamine. Khỉ Rhesus (Macaca mulatta) (n = 16, 5 đực và 3 cái được phân bổ ngẫu nhiên vào mỗi nhóm điều trị) nhận được hoặc là ketamine (KET) (10 mg.kg−1) hoặc fentanyl-midazolam-medetomidine (FMM) (10 μg/kg−1; 0.5 mg.kg−1; 20 μg.kg−1) cả đều tiêm bắp. Oxy (100%) được cung cấp qua mặt nạ và nhịp tim, huyết áp, tỷ lệ hô hấp, EtCO2 và độ sâu gây mê được đánh giá mỗi 5 phút trong 20 phút. Sau thời điểm cuối cùng, nhóm khỉ FMM được hồi phục bằng atipamezole-naloxone (0.2 mg.kg−1; 10 μg.kg−1). Quy trình hồi phục được đánh giá bằng cách sử dụng thang điểm lâm sàng. Sự khác biệt về các thông số sinh lý và chất lượng gây mê được so sánh bằng phương pháp Diện tích Dưới Đường (AUC) và các bài kiểm tra Mann-Witney hoặc t-student. Nhịp tim (nhịp/phút) (Ket = 119 ± 18; FMM = 89 ± 17; p = 0.0066), huyết áp tâm thu (mmHg) (Ket = 109 ± 10; FMM = 97 ± 10; p = 0.0313), và tỷ lệ hô hấp (nhịp/phút) (Ket = 39 ± 9; FMM = 29 ± 10; p = 0.0416) đều thấp hơn đáng kể ở nhóm FMM. CO2 thời điểm cuối không khác nhau giữa các nhóm (KET = 33 ± 8; FMM = 42 ± 11; p = 0.0462). Mặc dù một số sự suy giảm về các thông số sinh lý được ghi nhận khi sử dụng FMM, nhưng tất cả các biến số vẫn nằm trong giới hạn bình thường ở cả hai nhóm. Thời gian bắt đầu gây mê đủ để xử lý an toàn nhanh hơn với ketamine (KET = 2.9 ± 1.4 phút; FMM = 7.9 ± 1.2 phút; p = 0.0009), nhưng hồi phục FMM lại nhanh hơn (KET = 21.4 ± 13.4 phút; FMM = 9.1 ± 3.6 phút; p = 0.0379) và chất lượng hồi phục tốt hơn (KET = 1.3 ± 0.9; FMM = 7.4 ± 1.9; p = 0.0009) có thể chủ yếu do hiệu quả của các tác nhân hồi phục được sử dụng. FMM cung cấp một sự bất động dễ hồi phục với chất lượng hồi phục nhanh và tốt, có thể trở thành một lựa chọn hữu ích thay thế cho ketamine.

Từ khóa


Tài liệu tham khảo

Abee CR, Mansfield K, Tardif SD, Morris T. Nonhuman Primates in Biomedical Research: Biology and Management. London, United Kingdom: Elsevier Science; 2012. Flecknell P. Laboratory Animal Anaesthesia. 4th ed. Oxford: Elsevier Science; 2015. Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson SA. Veterinary Anesthesia and Analgesia. Oxford: Wiley Blackwell; 2015. Plumb DC. Plumb's Veterinary Drug Handbook: Desk Edition. 6th ed. Ames, IA: Blackwell; 2008. Sun FJ, Wright DE, Pinson DM. Comparison of ketamine versus combination of ketamine and medetomidine in injectable anesthetic protocols: chemical immobilization in macaques and tissue reaction in rats. Contemp Top Lab Anim Sci. 2003;42:32–7. Carrier CA, Donnelly KB. Post-injection sciatic neuropathy in a cynomolgus macaque (Macaca fascicularis). J Med Primatol. 2013;43:52–4. Adami C, Spadavecchia C, Casoni D. Seizure activity occurring in two dogs after S-ketamine-induction. Schweiz Arch Tierheilkd. 2013;155:569–72. Celesia GG, Chen R-C. Effects of Ketamine on EEG activity in cats and monkeys. Electroencephalogr Clin Neurophysiol. 1974;37:345–53. Christe KL, Lee UJ, Lemoy M-J, Havton LA. Generalized Seizure Activity in an Adult Rhesus Macaque (Macaca mulatta) during Ketamine Anesthesia and Urodynamic Studies. Comp Med. 2013;63:445–7. Gourie-Devi M, Cherian L, Shankar SK. Seizures in cats induced by ketamine hydrochloride anaesthesia--a preliminary report. Indian J Med Res. 1983;77:525–8. Baker NJ, Schofield JC, Caswell MD, McLellan AD. Effects of Early Atipamezole Reversal of Medetomidine–Ketamine Anesthesia in Mice. J Am Assoc Lab Anim Sci. 2011;50:916–20. Cevik E, Bilgic S, Kilic E, Cinar O, Hasman H, Acar AY, Eroglu M. Comparison of ketamine–low-dose midozolam with midazolam-fentanyl for orthopedic emergencies: a double-blind randomized trial. Am J Emerg Med. 2013;31:108–13. Mamula P, Markowitz JE, Neiswender K, Zimmerman A, Wood S, Garofolo M, Nieberle M, Trautwein A, Lombardi S, Sargent-Harkins L, Lachewitz G, Farace L, Morgan V, Puma A, Cook-Sather SD, Liacouras CA. Safety of intravenous midazolam and fentanyl for pediatric GI endoscopy: prospective study of 1578 endoscopies. Gastrointest Endosc. 2007;65:203–10. McQueen A, Wright RO, Kido MM, Kaye E, Krauss B. Procedural Sedation and Analgesia Outcomes in Children After Discharge From the Emergency Department: Ketamine Versus Fentanyl/Midazolam. Ann Emerg Med. 2009;54:191–197.e4. Milić M, Goranović T, Knežević P. Complications of sevoflurane–fentanyl versus midazolam–fentanyl anesthesia in pediatric cleft lip and palate surgery: a randomized comparison study. Int J Oral Maxillofac Surg. 2010;39:5–9. Gerak LR, Brandt MR, France CP. Studies on benzodiazepines and opioids administered alone andin combination in rhesus monkeys: ventilation and drug discrimination. Psychopharmacology (Berl). 1998;137:164–74. Albrecht M, Henke J, Tacke S, Markert M, Guth B. Effects of isoflurane, ketamine-xylazine and a combination of medetomidine, midazolam and fentanyl on physiological variables continuously measured by telemetry in Wistar rats. BMC Vet Res. 2014;10:1–14. Albrecht M. Influence of repeated anaesthesia on physiological parameters in male Wistar rats: a telemetricstudy about isoflurane, ketamine-xylazine and a combination of medetomidine, midazolam and fentanyl. BMC Vet Res. 2014;10:1–15. Rahmanian-Schwarz A, Held M, Knoeller T, Amr A, Schaller H-E, Jaminet P. The Effect of Repetitive Intraperitoneal Anesthesia by Application of Fentanyl-Medetomidine and Midazolam in Laboratory Rats. J Invest Surg. 2012;25:123–6. Votava M, Hess L, Schreiberová J, Málek J, Štein K. Short term pharmacological immobilization in macaque monkeys. Vet Anaesth Analg. 2011;38:490–3. Viera AJ, Garrett JM. Understanding Interobserver Agreement: The Kappa Statistic. Fam Med. 2005;37:360–3. Kohn DF, Wixson SK, White WJ, Benson GJ. Anesthesia and Analgesia in Laboratory Animals. New York: Elsevier Science; 1997. Lee VK, Flynt KS, Haag LM, Taylor DK. Comparison of the Effects of Ketamine, Ketamine–Medetomidine, and Ketamine– Midazolam on Physiologic Parameters and Anesthesia-Induced Stress in Rhesus (Macaca mulatta) and Cynomolgus (Macaca fascicularis) Macaques. J Am Assoc Lab Anim Sci. 2010;49:57–63. Naccarato EF, Hunter WS. Anaesthetic effects of various ratios of ketamine and xylazine in rhesus monkeys (Macaca mulatta). Lab Anim. 1979;13:317–9. Settle TL, Rico PJ, Lugo-Roman LA. The effect of daily repeated sedation using ketamine or ketamine combined with medetomidine on physiology and anesthetic characteristics in Rhesus Macaques. J Med Primatol. 2010;39:50–7. Dahan A, Aarts L, Smith TW. Incidence, Reversal, and Prevention of Opioid-induced Respiratory Depression. Anesthesiology. 2010;112:226–38. Sinclair MD. A review of the physiological effects of α2-agonists related to the clinical use of medetomidine in small animal practice. Can Vet J. 2003;44:885–97. Flecknell PA, Liles JH, Wootton R. Reversal of fentanyl/fluanisone neuroleptanalgesia in the rabbit using mixed agonist/antagonist opioids. Lab Anim. 1989;23:147–55. Hu C, Flecknell PA, Liles JH. Fentanyl and medetomidine anaesthesia in the rat and its reversal using atipamazole and either nalbuphine or butorphanol. Laboratory Animals. 1992;26:15–22. Latasch L, Probst S, Dudziak R. Reversal by Nalbuphine of Respiratory Depression Caused by Fentanyl. Anesth Analg. 1984;63:814–6. Haskins SC, Farver TB, Patz JD. Ketamine in dogs. Am J Vet Res. 1985;46:1855–60. Moreland AF, Glaser C. Evaluation of ketamine, ketamine-xylazine and ketamine-diazepam anesthesia in the ferret. Lab Anim Sci. 1985;35:287–90. Nowrouzian I, Schels HF, Ghodsian I, Karimi H. Evaluation of the anaesthetic properties of ketamine and a ketamine/xylazine/atropine combination in sheep. Vet Rec. 1981;108:354–6. Wellington D, Mikaelian I, Singer L. Comparison of Ketamine–Xylazine and Ketamine–Dexmedetomidine Anesthesia and Intraperitoneal Tolerance in Rats. J Am Assoc Lab Anim Sci. 2013;52:481–7. Clark JA, Lieh-Lai MW, Sarnaik A, Mattoo TK. Discrepancies Between Direct and Indirect Blood Pressure Measurements Using Various Recommendations for Arm Cuff Selection. Pediatrics. 2002;11:920–3. Chester AE, Dorr AE, Lund KR, Wood LD. Noninvasive measurement of blood pressure in conscious cynomolgus monkeys. Fundam Appl Toxicol. 1992;19:64–8. Wiester MJ, Iltis R. Diastolic and systolic blood pressure measurements in monkeys determined by a noninvasive tail-cuff technique. J Lab Clin Med. 1976;87:354–61. Yeung KR, Lind JM, Heffernan SJ, Sunderland N, Hennessy A, Makris A. Comparison of indirect and direct blood pressure measurements in baboons during ketamine anaesthesia. J Med Primatol. 2014;43:217–24. Belenkiy S, Ivey KM, Batchinsky AI, Langer T, Necsoiu C, Baker W, Salinas J, Cancio LC. Noninvasive Carbon Dioxide Monitoring in a Porcine Model of Acute Lung Injury Due to Smoke Inhalation and Burns. Shock. 2013;39:495–500. Fierstra J, Winter JD, Machina M, Lukovic J, Duffin J, Kassner A, Fisher JA. Non-invasive accurate measurement of arterial PCO2 in a pediatric animal model. J Clin Monit Comput. 2013;27:147–55. Manifold CA, Davids N, Villers LC, Wampler DA. Capnography for the nonintubated patient in the emergency setting. J Emerg Med. 2013;45:626–32. Fukuda K, Tatsuya I, Kaneko Y. Is Measurement of end-tidal CO2 through a nasal cannula reliable? Anesth Prog. 1997;1–4. Agus MS, Alexander JL, Mantell PA. Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis. Pediatric Diabetes. 2006;7:1–5. Yanagidate F, Dohi S. Modified nasal cannula for simultaneous oxygen delivery and end-tidal CO2 monitoring during spontaneous breathing. Eur J Anaesthesiol. 2006;23:257–60. Winterborn AN, Bates WA, Feng C, Wyatt JD. The efficacy of orally dosed ketamine and ketamine/medetomidine compared with intramuscular ketamine in rhesus macaques (Macaca mulatta) and the effects of dosing route on haematological stress markers. J Med Primatol. 2008;37:116–27. Young SS, Schilling AM, Skeans S, Ritacco G. Short duration anaesthesia with medetomidine and ketamine in cynomolgus monkeys. Lab Anim. 1999;33:162–8. Myrvik MP, Drendel AL, Brandow AM, Yan K, Hoffmann RG, Panepinto JA. A Comparison of Pain Assessment Measures in Pediatric Sickle Cell Disease: Visual Analog Scale Versus Numeric Rating Scale. J Pediatr Hematol Oncol. 2015;37:190–4. Abend R, Dan O, Maoz K, Raz S, Bar-Haim Y. Reliability, validity and sensitivity of a computerized visual analog scale measuring state anxiety. J Behav Ther Exp Psychiatry. 2014;45:447–53. Rausch M, Zehetleitner M. Comparison between a visual analogue scale and a four point scale as measures of conscious experience of motion. Conscious Cogn. 2014;28:126–40. Wehby G, Naderi H, Robbins J, Ansley T, Damiano P. Comparing the Visual Analogue Scale and the Pediatric Quality of Life Inventory for Measuring Health-Related Quality of Life in Children with Oral Clefts. IJERPH. 2014;11:4280–91. Maxwell C. Sensitivity and Accuracy of the Visual Analogue Scale: A Psycho-Physical Classroom Experiment. Br J Clin Pharmac. 1978;6:15–24. Janssen NJJF, Tan EYL, Staal M, Janssen EPCJ, Leroy PLJM, Lousberg R, van Os J, Schieveld JNM. On the utility of diagnostic instruments for pediatric delirium in critical illness: an evaluation of the Pediatric Anesthesia Emergence Delirium Scale, the Delirium Rating Scale 88, and the Delirium Rating Scale-Revised R-98. Intensive Care Med. 2011;37:1331–7. Sikich N, Lerman J. Development and Psychometric Evaluation of the Pediatric Anesthesia Emergence Delirium Scale. Anesthesiology. 2004;100:1138–45. Costi D, Ahmed S, Stephens K, Strickland P, Ellwood J, Larsson JN, et al. Effects of sevoflurane versus other general anaesthesia on emergence agitation in children (Review). The Cochrane Library. 2014;1–212. Freitas GC, da Cunha MG MCM, Gomes K, da Cunha JP MCM, Togni M, Pippi NL, Carregaro AB. Acid–base and biochemical stabilization and quality of recovery in male cats with urethral obstruction and anesthetized with propofol or a combination of ketamine and diazepam. Can J Vet Res. 2012;76:201–8. Kennedy MJ, Smith LJ. A comparison of cardiopulmonary function, recovery quality, and total dosages required for induction and total intravenous anesthesia with propofol versusa propofol-ketamine combination in healthy Beagle dogs. Vet Anaesth Analg. 2014;42:350–9. Chen J, Li W, Hu X, Wang D. Emergence agitation after cataract surgery in children: a comparison of midazolam, propofol and ketamine. Pediatr Anesth. 2010;20:873–9. Valverde A, Black B, Cribb NC, Hathway A, Daw A. Assessment of unassisted recovery from repeated general isoflurane anesthesia in horses following post-anesthetic administration of xylazine or acepromazine or a combination of xylazine and ketamine. Vet Anaesth Analg. 2012;40:3–12. Bate ST, Clark RA. The Design and Statistical Analysis of Animal Experiments. Cambridge, United Kingdom: Cambridge University Press; 2014. Liengme B: A Guide to Microsoft Excel 2007 for Scientists and Engineers. Burlington, MA: Elsevier Science; 2008.