So sánh tác động của trường từ trường xung và bức xạ gamma lên tế bào meristem của mầm hành (Allium cepa L.)

A. E. Aldibekova1, E. V. Styazhkina2,1, G. A. Tryapitsyna2,1, E. A. Pryakhin1
1Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
2Chelyabinsk State University, Chelyabinsk, Russia

Tóm tắt

Tác động của trường từ trường xung (PMF) lên tế bào meristem của mầm hành đã được so sánh với tác động của bức xạ gamma cấp tính bằng phương pháp thử nghiệm allium. Kết quả cho thấy một PMF với tần số mang 1.8 MHz, tỷ lệ lặp xung 28 kHz và độ cảm ứng trường từ 75 mT mỗi xung dẫn đến sự gia tăng chỉ số phân bào, chủ yếu nhờ vào việc tăng tỷ lệ tế bào ở kỳ đầu (prophase) và gia tăng tần suất tế bào có dị thường nhiễm sắc thể ở kỳ giữa - kỳ cuối (ana-telophase), nhưng không ảnh hưởng đến tần suất tế bào có nhân nhỏ (micronuclei). Đã có giả thuyết cho rằng PMF gây ra stress oxy không đặc hiệu ở tế bào thực vật, kèm theo sự chậm lại trong chu kỳ tế bào tại điểm kiểm tra (G2/M) và sự kích thích tổn thương DNA. Theo những chỉ số này, PMF tương tự như tác động của bức xạ ion hóa với liều lượng từ 0.05 đến 0.5 Gy.

Từ khóa

#trường từ trường xung #bức xạ gamma #tế bào meristem #mầm hành #stress oxy #chu kỳ tế bào #tổn thương DNA

Tài liệu tham khảo

Barberio, A., Voltolini, J.C., and Mello, M.L.S., Standardization of bulb and root sample sizes for the Allium cepa test, Ecotoxicology, 2011, vol. 20, pp. 927–935. https://doi.org/10.1007/s10646-011-0602-8 Belyavskaya, N.A., Biological effects due to weak magnetic field on plants, Adv. Space Res., 2004, vol. 34, no. 7, pp. 1566–1574. https://doi.org/10.1016/j.asr.2004.01.021 Bogolyubov, V.M. and Skurikhina, L.A., Biological effect of constant and alternating low-frequency magnetic fields, Vopr. Kurortol., Fizioter. LFK, 1978, no. 6, pp. 64–72. Bolsunovsky, A.Ya., Dementyev, D.V., Trofimova, E.A., Iniatkina, E.M., Kladko, Yu.V., and Petrichenkov, M.V., Cytogenetic effects of γ-radiation in onion (Allium cepa L.) seedlings, Dokl. Biochem. Biophys., 2018, vol. 481, pp. 181–185. https://doi.org/10.1134/S1607672918040014 Donà, M., Ventura, L., Macovei, A., Confalonieri, M., Savio, M., Giovannin, A., Carbonera, D., and Balestrazzi, A., Gamma irradiation with different dose rates induces different DNA damage responses in Petunia x hybrida cells, J. Plant Physiol., 2013, vol. 170, pp. 780–787. https://doi.org/10.1016/j.jplph.2013.01.010 Evseeva, T.I., Geras’kin, S.A., Shuktomova, I.I., and Taskaev, A.I., Genotoxicity and cytotoxicity assay of water sampled from the underground nuclear explosion site in the north of the Perm region (Russia), J. Environ. Radioact., 2005, vol. 80, pp. 59–74. https://doi.org/10.1016/j.jenvrad.2004.08.014 Fenech, M. and Morley, A., Measurement of micronuclei in lymphocytes, Mutat. Res., 1985, no. 147, pp. 29–36. https://doi.org/10.1016/0165-1161(85)90015-9 Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Parry, J., Norppa, L.H., Eastmond, D.A., Tucker, J.D., and Thomas, P., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, 2011, vol. 26, pp. 125–132. https://doi.org/10.1093/mutage/geq052 Fiskesjo, G., The Allium test as a standard in environmental monitoring, Hereditas, 1985, vol. 102, pp. 99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x Galuzo, S.Yu. and Kozlov, V.I., Impul’snoe magnitnoe pole: Laboratornyi praktikum po obshchei fizike (elektrichestvo i magnetizm) (Pulsed magnetic field: Laboratory workshop in general physics (electricity and magnetism)), Moscow: Mosk. Gos. Univ., 2006. Geras’kin, S.A., Oudalova, A.A., Kim, J.K., Dikarev, V.G., and Dikareva, N.S., Cytogenetic effect of low dose c-radiation in Hordeum vulgare seedlings: non-linear dose-effect relationship, Radiat. Environ. Biophys., 2007, vol. 46, no. 1, pp. 31–41. https://doi.org/10.1007/s00411-006-0082-z Goodman, E.M., Sharpe, P.T., Greenebaum, B., and Marron, M.T., Pulsed magnetic fields alter the cell surface, FEBS Lett., 1986, vol. 199, no. 2, pp. 275–278. https://doi.org/10.1016/0014-5793(86)80494-x Grant, W.F., Chromosome aberration assays in Allium. A report of the US environmental protection agency Gene-Tox program, Mutation Res., 1982, vol. 99, pp. 273–291. https://doi.org/10.1016/0165-1110(82)90046-X Il’inskikh, N.N., Novitskii, V.V., Vanchugova, N.N., and Il’inskikh, I.N., Mikroyadernyi analiz i tsitogeneticheskaya nestabil’nost’ (Micronucleus Analysis and Cytogenetic Instability), Tomsk: Tomsk. Univ., 1992. Kalaev, V.N., Butorina, A.K., Panov, A.V., and Levin, M.N., The influence of the electric field on the cytogenetic parameters of the cells of the apical meristem of the seedlings of pedunculate oak (Quercus robur L.), Vestn. VGU, Ser. K-him. Biol. Farm., 2003, no. 2, pp. 136–141. Kisurina-Evgen’eva, O.P., Sutyagina, O.I., and Onishchenko, G.E., Biogenesis of micronuclei, Biokhimiya, 2016, vol. 81, no. 5, pp. 612–624. Kumar, A., Kaur, S., Chandel, S., Singh, H.P., Batish, D.R., and Kohli, R.K., Comparative cyto- and genotoxicity of 900 and 1800 MHz electromagnetic field radiations in root meristems of Allium cepa, Ecotoxicol. Environ. Saf., 2020, vol. 188. https://doi.org/10.1016/j.ecoenv.2019.109786 Kuzovlev, A.N., Yadgarov, M.Ya., Berikashvili, L.B., Ryabova, E.V., Goncharova, D.D., Perekhodov, S.N., and Likhvantsev, V.V., Choosing a statistical analysis method, Anesteziol. Reanimatol., 2021, no. 3, pp. 88–93. https://doi.org/10.17116/anaesthesiology202103188 Livshiz, Y. and Gafri, O., Technology and equipment for industrial use of pulse magnetic fields, Digest of Technical Papers. 12th IEEE Int. Pulsed Power Conf., Cat. no. 99CH36358, 1999, vol. 1, pp. 475–478. Loeschinger, M., Thumm, S., Haemmerle, H., and Rodemann, H.P., Stimulation of protein kinase a activity and induced terminal differentiation of human skin fibroblasts in culture by low-frequency electromagnetic fields, Toxicol. Lett., 1998, vols. 96–97, pp. 369–376. https://doi.org/10.1016/s0378-4274(98)00095-2 López-Díaz, B., Mercado-Sáenz, S., Martínez-Morillo, M., Sendra-Portero, F., and Ruiz-Gómez, M.J., Long-term exposure to a pulsed magnetic field (1.5 mT, 25 Hz) increases genomic DNA spontaneous degradation, Electromagnet. Biol. Med., 2014, vol. 33, no. 3, pp. 228–235. https://doi.org/10.3109/15368378.2013.802245 Narkevich, A.N., Vinogradov, K.A., and Grzhibovskii, A.M., Multiple comparisons in biomedical research: problems and solutions, Ekol. Chel., 2020, no. 10, pp. 55–64. https://doi.org/10.33396/1728-0869-2020-10-55-64 Olive, P.L., The role of DNA single- and double-strand breaks in cell killing by ionizing radiation, Radiat. Res. Soc., 1998, vol. 150, no. 5, suppl.: Madame Curie’s Discovery of Radium (1898): A Commemoration by Women in Radiation Sciences, 1998, pp. 42–51. Oudalova, A.A., Geras’kin, S.A., Dikarev, V.G., Nesterov, Y.B., and Dikareva, N.S., Induction of chromosome aberrations is non-linear within the low dose region and depends on dose rate, Radiat. Protect. Dosim., 2002, vol. 99, pp. 245–248. https://doi.org/10.1093/oxfordjournals.rpd.a006774 Panagopoulos, D.J., Karabarbounis, A., Yakymenko, I., and Chrousos, G.P., Human made electromagnetic fields: ion forced oscillation and voltage gated ion channel dysfunction, oxidative stress and DNA damage (review), Int. J. Oncol., 2021, vol. 59, no. 5. https://doi.org/10.3892/ijo.2021.5272 Panda, B.B. and Sahu, U.K., Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells of Allium cepa by the organophosphorus insecticide fensulfotion, Cytobiosis, 1985, vol. 42, pp. 147–155. Pausheva, Z.P., Praktikum po tsitologii rastenii (Workshop on Plant Cytology), Moscow: Agropromizdat, 1988, 4th ed. (suppl., rev.). Priakhin, E.A., Urutskoev, L.I., Stiazhkina, E.V., Tryapitsyna, G.A., Aldibekova, A.E., Peretykin, A.A., Priakhin, E.E., Alabin, K.A., Pilia, N.D., Chikovani, N.Z., Voitenko, D.A., and Arshba, R.M., Biological detection of physical factors related to the high-current electric explosion of conductors in a vacuum, Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 11, pp. 1341–1348. https://doi.org/10.3103/S1062873820110222 Prokhorova, I.M., Kovaleva, M.I., and Fomicheva, A.M., Otsenka mitotoksicheskogo i mutagennogo deistviya faktorov okruzhayushchei sredy: metod. ukazaniya (Assessment of Mitotoxic and Mutagenic Effects of Environmental Factors: Guidelines), Yaroslavl: Yarosl. Gos. Univ., 2003. Prokhorova, I.M., Kovaleva, M.I., and Fomicheva, A.N., Geneticheskaya toksikologiya: laboratornyi praktikum (Genetic Toxicology: Laboratory Workshop), Yaroslavl: Yarosl. Gos. Univ., 2005. Rank, J., The method of Allium anaphase-telophase chromosome aberration assay, Ekologija (Vilnius), 2003, vol. 1, pp. 38–42. Reddy, S.B., Weller, J., Desjardins-Holmes, D., Winters, T., Keenliside, L., Prato, F.S., Prihoda, T.J., Thomas, V., and Thomas, A.W., Micronuclei in the blood and bone marrow cells of mice exposed to specific complex time-varying pulsed magnetic fields, Bioelectromagnetics, 2010, vol. 31, no. 6, pp. 445–453. https://doi.org/10.1002/bem.20576 Sarraf, M., Kataria, S., Taimourya, H., Oliveira, SantosL., Menegatti, R.D., Jain, M., Ihtisham, M., and Liu, S., Magnetic field (MF) applications in plants: an overview, Plants, 2020, vol. 9, p. 1139. https://doi.org/10.3390/plants9091139 Shaburova, N., Krymsky, V., and Moghaddam, A.O., Theory and practice of using pulsed electromagnetic processing of metal melts, Materials, 2022, vol. 15. https://doi.org/10.3390/ma15031235 Singh, N.P. and Lai, H., 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells, Mutat. Res., 1998, vol. 400, nos. 1–2, pp. 313–320. https://doi.org/10.1016/s0027-5107(98)00017-7 Sinovets, S.Yu., Pyatkova, S.V., and Koz’min, G.V., Experimental justification for the use of allium test in radioecological monitoring, Izv. Vuzov, 2009, no. 1, pp. 32–38. https://doi.org/10.3390/ijms21041534 Sommer, S., Buraczewska, I., and Kruszewski, M., Micronucleus assay: the state of art, and future directions, Int. J. Mol. Sci., 2020, vol. 21, no. 4, p. 1534. https://doi.org/10.3390/ijms21041534 Terradas, M., Martin, M., Tusell, L., and Genesca, A., Dna lesions sequestered in micronuclei induce a local defective damage response, DNA Repair, 2009, no. 8, pp. 1225–1234. https://doi.org/10.1016/j.dnarep.2009.07.004 Tkalec, M., Malarić, K., Pavlica, M., Pevalek-Kozlina, B., and Vidaković-Cifrek, Z., Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L., Mutat. Res., 2009, vol. 672, no. 2, pp. 76–81. https://doi.org/10.1016/j.mrgentox.2008.09.022 Tskhovrebova, L.V., Agadzhanyan, A.V., and Makedonov, G.P., The effect of a radioadaptive response after exposure to X‑rays and gamma quanta on peripheral blood lymphocytes of healthy donors, Auditorium. Elektron. Nauchn. Zh. Kursk. Gos. Univ., 2017, no. 2 (14). Udalova, A.A., Pyatkova, S.V., Geras’kin, S.A., Kiselev, S.M., and Akhromeev, S.V., Assessment of cyto- and genotoxicity of groundwater collected at the industrial site of the Far Eastern Center for Radioactive Waste Management, Radiats. Biol. Radioekol., 2016, vol. 56, no. 2, pp. 208–219. https://doi.org/10.7868/S0869803116020132 Wahab, M.A., Podd, J.V., Rapley, B.I., and Rowland, R.E., Elevated sister chromatid exchange frequencies in dividing human peripheral blood lymphocytes exposed to 50 Hz magnetic fields, Bioelectromagnetics, 2007, vol. 28, no. 4, pp. 281–288. https://doi.org/10.1002/bem.20289 Yalçın, S. and Erdem, G., Biological effects of electromagnetic fields, Afr. J. Biotechnol., 2012, vol. 11, no. 17, pp. 3933–3941. https://doi.org/10.5897/AJB11.3308