Comparison of some finite element methods for solving the diffusion-convection-reaction equation

Ramon Codina1
1Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya, Gran Capità s/n, Edifici C1, 08034 Barcelona, Spain

Tài liệu tham khảo

Brooks, 1982, Streamline Upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199, 10.1016/0045-7825(82)90071-8 Hughes, 1989, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173, 10.1016/0045-7825(89)90111-4 Hughes, 1995, Multiscale phenomena: Green's function, subgrid scale models, bubbles, and the origins of stabilized formulations Hughes, 1995, Multiscale phenomena: Green's function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations, Comput. Methods Appl. Mech. Engrg., 127, 387, 10.1016/0045-7825(95)00844-9 Franca, 1994, Bubble functions prompt unusual stabilized finite element methods, Comput. Methods Appl. Mech. Engrg., 123, 299, 10.1016/0045-7825(94)00721-X Douglas, 1982, Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 871, 10.1137/0719063 Pironneau, 1982, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math., 38, 309, 10.1007/BF01396435 Löhner, 1984, The solution of non-linear hyperbolic equation systems by the finite element method, Int. J. Numer. Methods Fluids, 4, 1043, 10.1002/fld.1650041105 Zienkiewicz, 1995, A general algorithm for compressible and incompressible flow. Part I: The split, characteristic based scheme, Int. J. Numer. Methods Fluids, 20, 869, 10.1002/fld.1650200812 Donea, 1984, A Taylor-Galerkin method for convection transport problems, Int. J. Numer. Methods Engrg., 20, 101, 10.1002/nme.1620200108 LeVeque, 1990 von Neumann, 1950, A method for the numerical calculation of hydrodynamical shocks, J. Appl. Phys., 21, 232, 10.1063/1.1699639 Kelly, 1980, A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems, Int. J. Numer. Methods Engrg., 15, 1705, 10.1002/nme.1620151111 Hughes, 1979, A multi-dimensional upwind scheme with no crosswind diffusion Hughes, 1982, A theoretical framework for Petrov-Galerkin methods, with discontinuous weighting functions: applications to the streamline upwind procedure, vol. IV, 46 Codina, 1992, The intrinsic time for the SUPG formulation using quadratic elements, Comput. Methods Appl. Mech. Engrg., 94, 239, 10.1016/0045-7825(92)90149-E Hughes, 1986, A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 305, 10.1016/0045-7825(86)90152-0 Johnson, 1984, Finite element methods for linear hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 45, 285, 10.1016/0045-7825(84)90158-0 Lesaint, 1974, On a finite element method for solving the neutron transport equation Hughes, 1986, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation for the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85, 10.1016/0045-7825(86)90025-3 Brezzi, 1991 Hughes, 1987, A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65, 85, 10.1016/0045-7825(87)90184-8 Franca, 1991, Error analysis of some Galerkin least-squares methods for the elasticity equations, SIAM J. Numer. Anal., 28, 1680, 10.1137/0728084 Shakib, 1991, A new finite element formulation for computational fluid dynamics: IX. Fourier Analysis of space-time Galerkin/least-squares algorithms, Comput. Methods Appl. Mech. Engrg., 87, 35, 10.1016/0045-7825(91)90145-V Harari, 1992, What are C and h?: Inequalities for the analysis and design of finite element methods, Comput. Methods Appl. Mech. Engrg., 97, 157, 10.1016/0045-7825(92)90162-D Shakib, 1991, A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 89, 141, 10.1016/0045-7825(91)90041-4 Douglas, 1989, An absolutely stabilized finite element method for the Stokes problem, Math. Comput., 52, 495, 10.1090/S0025-5718-1989-0958871-X Franca, 1992, Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95, 253, 10.1016/0045-7825(92)90143-8 Bank, 1990, A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem, Comput. Methods Appl. Mech. Engrg., 83, 61, 10.1016/0045-7825(90)90124-5 Brezzi, 1992, A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg., 96, 117, 10.1016/0045-7825(92)90102-P Arnold, 1984, A stable finite element for the Stokes equations, Calcolo, 21, 337, 10.1007/BF02576171 Baiocchi, 1993, Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S), Comput. Methods Appl. Mech. Engrg., 105, 125, 10.1016/0045-7825(93)90119-I Codina, 1996, Numerical solution of the incompressible Navier-Stokes equations with Coriolis forces based on the discretization of the total time derivative, CIMNE Report Zienkiewicz, 1989, Vol. 2 Ciarlet, 1973, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 2, 17, 10.1016/0045-7825(73)90019-4 Codina, 1993, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 110, 325, 10.1016/0045-7825(93)90213-H