Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination

Journal of Applied Crystallography - Tập 48 Số 1 - Trang 3-10 - 2015
Lennard Krause1, Regine Herbst‐Irmer1, George M. Sheldrick1, Dietmar Stalke1
1Institut für Anorganische Chemie, Georg‐August Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)

Tóm tắt

The quality of diffraction data obtained using silver and molybdenum microsources has been compared for six model compounds with a wide range of absorption factors. The experiments were performed on two 30 W air-cooled Incoatec IµS microfocus sources with multilayer optics mounted on a Bruker D8 goniometer with a SMART APEX II CCD detector. All data were analysed, processed and refined using standard Bruker software. The results show that Ag Kα radiation can be beneficial when heavy elements are involved. A numerical absorption correction based on the positions and indices of the crystal faces is shown to be of limited use for the highly focused microsource beams, presumably because the assumption that the crystal is completely bathed in a (top-hat profile) beam of uniform intensity is no longer valid. Fortunately the empirical corrections implemented inSADABS, although originally intended as a correction for absorption, also correct rather well for the variations in the effective volume of the crystal irradiated. In three of the cases studied (two Ag and one Mo) the finalSHELXL R1 against all data after application of empirical corrections implemented inSADABSwas below 1%. Since such corrections are designed to optimize the agreement of the intensities of equivalent reflections with different paths through the crystal but the same Bragg 2θ angles, a further correction is required for the 2θ dependence of the absorption. For this,SADABSuses the transmission factor of a spherical crystal with a user-defined value of μr(where μ is the linear absorption coefficient andris the effective radius of the crystal); the best results are obtained whenris biased towards the smallest crystal dimension. The results presented here suggest that the IUCr publication requirement that a numerical absorption correction must be applied for strongly absorbing crystals is in need of revision.

Từ khóa


Tài liệu tham khảo

Arndt, 1990, J. Appl. Cryst., 23, 161, 10.1107/S0021889890000334

Azhakar, 2013, Dalton Trans., 42, 10277, 10.1039/c3dt50939g

Becker, 1974, Acta Cryst. A, 30, 129, 10.1107/S0567739474000337

Becker, 1974, Acta Cryst. A, 30, 148, 10.1107/S0567739474000349

Blessing, 1995, Acta Cryst. A, 51, 33, 10.1107/S0108767394005726

Blessing, 1997, J. Appl. Cryst., 30, 421, 10.1107/S0021889896014628

Borek, 2003, Acta Cryst. D, 59, 2031, 10.1107/S0907444903020924

Bruker (2009). APEX2 (Version 2.2012.2 0) and SAINT (Version 7.68A). Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2014). XPREP (Version 2014/2) and SADABS (Version 2014/4). Bruker AXS Inc., Madison, Wisconsin, USA.

Busing, 1957, Acta Cryst., 10, 180, 10.1107/S0365110X57000584

Coles, 2012, Chem. Sci., 3, 683, 10.1039/C2SC00955B

Coles, 2004, J. Appl. Cryst., 37, 988, 10.1107/S0021889804025166

Diederichs, 2010, Acta Cryst. D, 66, 733, 10.1107/S0907444910014836

Dubler, 1983, Acta Cryst. C, 39, 1143, 10.1107/S0108270183007702

Eickerling, 2013, Z. Anorg. Allg. Chem., 639, 1985, 10.1002/zaac.201200517

Evans, 2013, Acta Cryst. D, 69, 1204, 10.1107/S0907444913000061

Farrugia, 2007, Acta Cryst. E, 63, i142, 10.1107/S1600536807023355

Görbitz, 1999, Acta Cryst. B, 55, 1090, 10.1107/S0108768199008721

Gruner, 2002, Rev. Sci. Instrum., 73, 2815, 10.1063/1.1488674

Hamilton, 1965, Acta Cryst., 18, 502, 10.1107/S0365110X65001081

Harmening, 2010, Z. Anorg. Allg. Chem., 636, 972, 10.1002/zaac.201000003

Hasse, B., Wiesmann, J., Michaelsen, C., Heidorn, U., Kroth, S. & Hertlein, F. (2010). State-of-the-Art Multilayer Optics for X-ray Diffractometry. Geesthacht: Incoatec.

Henn, 2010, Acta Cryst. A, 66, 676, 10.1107/S0108767310038808

Huber, 1969, Acta Cryst. A, 25, 143, 10.1107/S0567739469000246

Hübschle, 2011, J. Appl. Cryst., 44, 1281, 10.1107/S0021889811043202

Jørgensen, 2012, Acta Cryst. A, 68, 301, 10.1107/S0108767312003066

Kabsch, 2010, Acta Cryst. D, 66, 133, 10.1107/S0907444909047374

Katayama, 1986, Acta Cryst. A, 42, 19, 10.1107/S0108767386099968

Kopfmann, 1968, Acta Cryst. A, 24, 348, 10.1107/S0567739468000690

North, 1968, Acta Cryst. A, 24, 351, 10.1107/S0567739468000707

Rohrmoser, 2007, J. Am. Chem. Soc., 129, 9356, 10.1021/ja068137y

Saouane, 2013, Chem. Sci., 4, 1270, 10.1039/c2sc21959j

Scherer, 2010, Angew. Chem., 122, 1623, 10.1002/ange.200904956

Schulz, 2009, J. Appl. Cryst., 42, 885, 10.1107/S0021889809030921

Sheldrick, 2008, Acta Cryst. A, 64, 112, 10.1107/S0108767307043930

Storm, 2004, Proc. SPIE, 5557, 177, 10.1117/12.557153

Weiss, 2001, J. Appl. Cryst., 34, 130, 10.1107/S0021889800018227