Comparison of short-term electrical load forecasting methods for different building types
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmed, NK, Atiya AF, Gayar NE, El-Shishiny H (2010) An empirical comparison of machine learning models for time series forecasting. Econ Rev 29(5-6):594–621.
Amasyali, K, El-Gohary NM (2018) A review of data-driven building energy consumption prediction studies. Renew Sust Energ Rev 81:1192–1205.
Bishop, CM (2006) Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Berlin.
Bundesministerium für Wirtschaft und Energie, BMWI (2017) Das Erneuerbare-Energien-Gesetz. https://www.erneuerbare-energien.de/EE/Redaktion/DE/Dossier/eeg.html. Accessed: 19 Feb 2020.
Chandrashekar, G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28.
Fischer, D, Härtl A, Wille-Haussmann B (2015) Model for electric load profiles with high time resolution for german households. Energy Build 92:170–179.
Gajowniczek, K, Zabkowski T (2014) Short term electricity forecasting using individual smart meter data. Procedia Comput Sci 35:589–597.
Gerossier, A, Girard R, Bocquet A, Kariniotakis G (2018) Robust day-ahead forecasting of household electricity demand and operational challenges. Energies 11(12):3503.
Hahn, H, Meyer-Nieberg S, Pickl S (2009) Electric load forecasting methods: Tools for decision making. Eur J Oper Res 199(3):902–907.
Hayes, B, Gruber J, Prodanovic M (2015) Short-term load forecasting at the local level using smart meter data In: 2015 IEEE Eindhoven PowerTech, 1–6.. IEEE, New York.
Hippert, HS, Pedreira CE, Souza RC (2001) Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans Power Syst 16(1):44–55.
Humeau, S, Wijaya TK, Vasirani M, Aberer K (2013) Electricity load forecasting for residential customers: Exploiting aggregation and correlation between households In: 2013 Sustainable Internet and ICT for Sustainability (SustainIT), 1–6.. IEEE, New York.
Hyndman, RJ, Athanasopoulos G (2018) Forecasting: Principles and Practice. OTexts, Monash University, Australia.
Hyndman, RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688.
Kong, W, Dong ZY, Jia Y, Hill DJ, Xu Y, Zhang Y (2017) Short-term residential load forecasting based on lstm recurrent neural network. IEEE Trans Smart Grid 10(1):841–851.
Kuster, C, Rezgui Y, Mourshed M (2017) Electrical load forecasting models: A critical systematic review. Sustain Cities Soc 35:257–270.
Kyriakides, E, Polycarpou M (2007) Short term electric load forecasting: A tutorial. In: Chen K Wang L (eds)Trends in Neural Computation, 391–418.. Springer, Berlin.
Lusis, P, Khalilpour KR, Andrew L, Liebman A (2017) Short-term residential load forecasting: Impact of calendar effects and forecast granularity. Appl Energy 205:654–669.
Makridakis, S, Spiliotis E, Assimakopoulos V (2018) Statistical and machine learning forecasting methods: Concerns and ways forward. PLoS ONE 13(3):1–26.
Makridakis, S, Spiliotis E, Assimakopoulos V (2018) The M4 Competition: Results, findings, conclusion and way forward. Int J Forecast 34(4):802–808. https://doi.org/10.1016/j.ijforecast.2018.06.001.
Massana, J, Pous C, Burgas L, Melendez J, Colomer J (2016) Short-term load forecasting for non-residential buildings contrasting artificial occupancy attributes. Energy Buildings 130:519–531.
Mirowski, P, Chen S, Ho TK, Yu C-N (2014) Demand forecasting in smart grids. Bell Labs Tech J 18(4):135–158.
Penya, YK, Borges CE, Fernández I (2011) Short-term load forecasting in non-residential buildings In: IEEE Africon’11, 1–6.. IEEE.
Sevlian, R, Rajagopal R (2018) A scaling law for short term load forecasting on varying levels of aggregation. Int J Electr Power Energy Syst 98:350–361.
Shcherbakov, MV, Brebels A, Shcherbakova NL, Tyukov AP, Janovsky TA, Kamaev VA (2013) A survey of forecast error measures. World Appl Sci J 24(24):171–176.
Shi, H, Xu M, Li R (2017) Deep learning for household load forecasting—a novel pooling deep rnn. IEEE Trans Smart Grid 9(5):5271–5280.
Snoek, J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms In: Advances in Neural Information Processing Systems, 2951–2959.. Curran Associates, Inc., Red Hook.