Comparison of pre-workout nitric oxide stimulating dietary supplements on skeletal muscle oxygen saturation, blood nitrate/nitrite, lipid peroxidation, and upper body exercise performance in resistance trained men

Richard J Bloomer1, Tyler M Farney1, John F Trepanowski1, Cameron G McCarthy1, Robert E Canale1, Brian K Schilling2
1Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, The University of Memphis, Memphis, USA
2Exercise Neuromechanics Laboratory, Department of Health and Sport Sciences, The University of Memphis, Memphis, USA

Tóm tắt

We compared Glycine Propionyl-L-Carnitine (GlycoCarn®) and three different pre-workout nutritional supplements on measures of skeletal muscle oxygen saturation (StO2), blood nitrate/nitrite (NOx), lactate (HLa), malondialdehyde (MDA), and exercise performance in men. Using a randomized, double-blind, cross-over design, 19 resistance trained men performed tests of muscular power (bench press throws) and endurance (10 sets of bench press to muscular failure). A placebo, GlycoCarn®, or one of three dietary supplements (SUPP1, SUPP2, SUPP3) was consumed prior to exercise, with one week separating conditions. Blood was collected before receiving the condition and immediately after exercise. StO2 was measured during the endurance test using Near Infrared Spectroscopy. Heart rate (HR) and rating of perceived exertion (RPE) were determined at the end of each set. A condition effect was noted for StO2 at the start of exercise (p = 0.02), with GlycoCarn® higher than SUPP2. A condition effect was also noted for StO2 at the end of exercise (p = 0.003), with SUPP1 lower than all other conditions. No statistically significant interaction, condition, or time effects were noted for NOx or MDA (p > 0.05); however, MDA decreased 13.7% with GlycoCarn® and increased in all other conditions. Only a time effect was noted for HLa (p < 0.0001), with values increasing from pre- to post-exercise. No effects were noted for HR, RPE, or for any exercise performance variables (p > 0.05); however, GlycoCarn® resulted in a statistically insignificant greater total volume load compared to the placebo (3.3%), SUPP1 (4.2%), SUPP2 (2.5%), and SUPP3 (4.6%). None of the products tested resulted in favorable changes in our chosen outcome measures, with the exception of GlycoCarn® in terms of higher StO2 at the start of exercise. GlycoCarn® resulted in a 13.7% decrease in MDA from pre- to post-exercise and yielded a non-significant but greater total volume load compared to all other conditions. These data indicate that 1) a single ingredient (GlycoCarn®) can provide similar practical benefit than finished products containing multiple ingredients, and 2) while we do not have data in relation to post-exercise recovery parameters, the tested products are ineffective in terms of increasing blood flow and improving acute upper body exercise performance.

Tài liệu tham khảo

Maughan RJ, King DS, Lea T: Dietary supplements. J Sports Sci. 2004, 22 (1): 95-113. 10.1080/0264041031000140581. Bloomer RJ: Nitric oxide supplements for sports. Strength and Conditioning Journal. 2010, 32 (2): 14-20. 10.1519/SSC.0b013e3181bdaf89. Astorino TA, Roberson DW: Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010, 24 (1): 257-265. 10.1519/JSC.0b013e3181c1f88a. Keisler BD, Armsey TD: Caffeine as an ergogenic aid. Curr Sports Med Rep. 2006, 5 (4): 215-219. Hespel P, Derave W: Ergogenic effects of creatine in sports and rehabilitation. Subcell Biochem. 2007, 46: 245-259. 10.1021/bi061646s. Van Thienen R, Van Proeyen K, Vanden Eynde B, Puype J, Lefere T, Hespel P: Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc. 2009, 41 (4): 898-903. 10.1249/MSS.0b013e31818db708. Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, Fukuda DH, Beck TW, Cramer JT, Stout JR: Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr. 2009, 6: 5-10.1186/1550-2783-6-5. Hoffman J, Ratamess NA, Ross R, Kang J, Magrelli J, Neese K, Faigenbaum AD, Wise JA: Beta-alanine and the hormonal response to exercise. Int J Sports Med. 2008, 29 (12): 952-958. 10.1055/s-2008-1038678. Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E: beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007, 103 (5): 1736-1743. 10.1152/japplphysiol.00397.2007. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT, Smith M, Wise JA: The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids. 2008, 34 (4): 547-554. 10.1007/s00726-007-0008-3. Zoeller RF, Stout JR, O'kroy JA, Torok DJ, Mielke M: Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids. 2007, 33 (3): 505-510. 10.1007/s00726-006-0399-6. Jacobs PL, Goldstein ER, Blackburn W, Orem I, Hughes JJ: Glycine propionyl-L-carnitine produces enhanced anaerobic work capacity with reduced lactate accumulation in resistance trained males. J Int Soc Sports Nutr. 2009, 6: 9-10.1186/1550-2783-6-9. Bloomer RJ, Smith WA, Fisher-Wellman KH: Glycine propionyl-L-carnitine increases plasma nitrate/nitrite in resistance trained men. J Int Soc Sports Nutr. 2007, 4: 22-10.1186/1550-2783-4-22. Bloomer RJ, Tschume LC, Smith WA: Glycine propionyl-L-carnitine modulates lipid peroxidation and nitric oxide in human subjects. Int J Vitam Nutr Res. 2009, 79 (3): 131-141. 10.1024/0300-9831.79.3.131. Fisher-Wellman K, Bloomer RJ: Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009, 8: 1-10.1186/1476-5918-8-1. Baechle TR, Earle RW: Essentials of Strength Training and Conditioning. 2008, 395-399. Judelson DA, Maresh CM, Yamamoto LM, Farrell MJ, Armstrong LE, Kraemer WJ, Volek JS, Spiering BA, Casa DJ, Anderson JM: Effect of hydration state on resistance exercise-induced endocrine markers of anabolism, catabolism, and metabolism. J Appl Physiol. 2008, 105 (3): 816-824. 10.1152/japplphysiol.01010.2007. Falvo MJ, Schilling BK, Bloomer RJ, Smith WA, Creasy AC: Efficacy of prior eccentric exercise in attenuating impaired exercise performance after muscle injury in resistance trained men. J Strength Cond Res. 2007, 21 (4): 1053-1060. 10.1519/R-21406.1. Spiering BA, Kraemer WJ, Hatfield DL, Vingren JL, Fragala MS, Ho JY, Thomas GA, Hakkinen K, Volek JS: Effects of L-carnitine L-tartrate supplementation on muscle oxygenation responses to resistance exercise. J Strength Cond Res. 2008, 22 (4): 1130-1135. 10.1519/JSC.0b013e31817d48d9. Colson SN, Wyatt FB, Johnston DL, Autrey LD, FitzGerald YL, Earnest CP: Cordyceps sinensis- and Rhodiola rosea-based supplementation in male cyclists and its effect on muscle tissue oxygen saturation. J Strength Cond Res. 2005, 19 (2): 358-363. 10.1519/R-15844.1. Snyder AC, Parmenter MA: Using near-infrared spectroscopy to determine maximal steady state exercise intensity. J Strength Cond Res. 2009, 23 (6): 1833-1840. 10.1519/JSC.0b013e3181ad3362. Ferrari M, Mottola L, Quaresima V: Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004, 29 (4): 463-487. Kraemer WJ, Volek JS, Speiering BA, Vingren JL: L-carnitine supplementation: a new pradigm for its role in exercise. Chemical Monthly. 2005, 136: 1383-1390. 10.1007/s00706-005-0322-y. Volek JS, Kraemer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P: L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 2002, 282 (2): E474-82. Jentzsch AM, Bachmann H, Furst P, Biesalski HK: Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med. 1996, 20 (2): 251-256. 10.1016/0891-5849(95)02043-8. Hendrix CR, Housh TJ, Mielke M, Zuniga JM, Camic CL, Johnson GO, Schmidt RJ, Housh DJ: Acute Effects of a Caffeine-Containing Supplement on Bench Press and Leg Extension Strength and Time to Exhaustion During Cycle Ergometry. J Strength Cond Res. 2009, 24 (3): 859-65. 10.1519/JSC.0b013e3181ae7976. Bode-Boger SM, Boger RH, Creutzig A, Tsikas D, Gutzki FM, Alexander K, Frolich JC: L-arginine infusion decreases peripheral arterial resistance and inhibits platelet aggregation in healthy subjects. Clin Sci (Lond). 1994, 87 (3): 303-310. Giugliano D, Marfella R, Verrazzo G, Acampora R, Coppola L, Cozzolino D, D'Onofrio F: The vascular effects of L-Arginine in humans. The role of endogenous insulin. J Clin Invest. 1997, 99 (3): 433-438. 10.1172/JCI119177. Bode-Boger SM, Boger RH, Galland A, Tsikas D, Frolich JC: L-arginine-induced vasodilation in healthy humans: pharmacokinetic-pharmacodynamic relationship. Br J Clin Pharmacol. 1998, 46 (5): 489-497. 10.1046/j.1365-2125.1998.00803.x. Adams MR, Forsyth CJ, Jessup W, Robinson J, Celermajer DS: Oral L-arginine inhibits platelet aggregation but does not enhance endothelium-dependent dilation in healthy young men. J Am Coll Cardiol. 1995, 26 (4): 1054-1061. 10.1016/0735-1097(95)00257-9. Chin-Dusting JP, Alexander CT, Arnold PJ, Hodgson WC, Lux AS, Jennings GL: Effects of in vivo and in vitro L-arginine supplementation on healthy human vessels. J Cardiovasc Pharmacol. 1996, 28 (1): 158-166. 10.1097/00005344-199607000-00023. Robinson TM, Sewell DA, Greenhaff PL: L-arginine ingestion after rest and exercise: effects on glucose disposal. Med Sci Sports Exerc. 2003, 35 (8): 1309-1315. 10.1249/01.MSS.0000079029.39770.2A. Kurz S, Harrison DG: Insulin and the arginine paradox. J Clin Invest. 1997, 99 (3): 369-370. 10.1172/JCI119166. Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP: L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007, 116 (2): 188-195. 10.1161/CIRCULATIONAHA.106.683656. Liu TH, Wu CL, Chiang CW, Lo YW, Tseng HF, Chang CK: No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletes. J Nutr Biochem. 2009, 20 (6): 462-468. 10.1016/j.jnutbio.2008.05.005. Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996, 271 (5 Pt 1): C1424-37. Wink DA, Miranda KM, Espey MG: Cytotoxicity related to oxidative and nitrosative stress by nitric oxide. Exp Biol Med (Maywood). 2001, 226 (7): 621-623. Joyner MJ, Casey DP: The catecholamines strike back. What NO does not do. Circ J. 2009, 73 (10): 1783-1792. 10.1253/circj.CJ-09-0559. Trojian TH, Beedie CJ: Placebo effect and athletes. Curr Sports Med Rep. 2008, 7 (4): 214-217. Bloomer RJ, Smith WA, Fisher-Wellman KH: Oxidative stress in response to forearm ischemia-reperfusion with and without carnitine administration. Int J Vitam Nutr Res. Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM: Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res. 2009, 23 (1): 315-324. 10.1519/JSC.0b013e31818b979a. Hadjicharalambous M, Kilduff LP, Pitsiladis YP: Brain serotonin and dopamine modulators, perceptual responses and endurance performance during exercise in the heat following creatine supplementation. J Int Soc Sports Nutr. 2008, 5: 14-10.1186/1550-2783-5-14.