Comparison of mycelial proteomes of two Verticillium albo-atrum pathotypes from hop

Springer Science and Business Media LLC - Tập 125 - Trang 159-171 - 2009
Stanislav Mandelc1, Sebastjan Radisek2, Polona Jamnik3, Branka Javornik1
1Biotechnical Faculty, Agronomy Department, University of Ljubljana, Ljubljana, Slovenia
2Slovenian Institute for Hop Research and Brewing, Zalec, Slovenia
3Biotechnical Faculty, Food Science and Technology Department, University of Ljubljana, Ljubljana, Slovenia

Tóm tắt

Verticillium wilt diseases caused by Verticillium spp. are known in many important crops and can seriously threaten their production. We studied Verticillium albo-atrum by comparative analysis of the proteome of four hop isolates, classified by the severity of wilt symptoms as mild and lethal pathotypes, from two geographic origins. A two-dimensional electrophoresis reference map of mycelium proteins was first established, resolving up to 650 protein spots on Coomassie-stained gels in a range of pH 4–7 and MW 14 – 116 kDa. The average coefficient of variance for the 268 matched protein spots was 16% and 15%, respectively, for technical and biological variability. Principal component analysis (PCA) discriminated the geographic origin of the isolates and between the two pathotypes and showed a closer relationship among English isolates than Slovene ones. The two-dimensional electrophoresis patterns of one mild (PG1) with one lethal pathotype (PG2) from Slovenia and one mild (M) with one lethal pathotype (PV1) from England were compared. A total of 27 and 30 spots were found differentially expressed between the pathotypes, which were analysed by tandem mass spectrometry. Fifty-three proteins were identified, of which 17 matched proteins with annotated functions. The lethal pathotypes showed increased expression of peroxiredoxine and ascorbate peroxidase, a higher level of cytoskeleton components and regulators, and a higher rate of protein synthesis and energy metabolism. These results reveal differences in the expression level of the identified proteins between the two pathotypes and are discussed in relation to virulence.

Tài liệu tham khảo

Aisif, A. R., Oellerich, M., Amstrong, V. W., Riemenschneider, B., Monod, M., & Reichard, U. (2006). Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. Journal of Proteome Research, 5, 954–962. doi:10.1021/pr0504586. Beckman, C. H. (1987). The nature of wilt disease in plants. St Paul, MN: The American Phytopathological Society. Clarkson, J. M., & Heale, J. B. (1985). Pathogenicity and colonization studies on wild-type and auxotrophic isolates of Verticillium albo-atrum from hop. Plant Pathology, 34, 119–128. doi:10.1111/j.1365-3059.1985.tb02768.x. Cordin, O., Banroques, J., Tanner, N. K., & Linder, P. (2006). The DEAD-box protein family of RNA helicases. Gene, 367, 17–37. doi:10.1016/j.gene.2005.10.019. Ebstrup, T., Saalbach, G., & Egsgaard, H. (2005). A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics, 5, 2839–2848. doi:10.1002/pmic.200401173. Engelhard, A. W. (1957) Host index of Verticillium albo-atrum Reinke and Berth, (including Verticillium dahliae Kleb.). In: Supplement to Plant Disease Reporter No. 244, pp. 23-49. Fernandez-Acero, F. J., Jorge, I., Calvo, E., Vallejo, I., Carbu, M., Camafeita, E., et al. (2006). Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics, 6, S88–S96. doi:10.1002/pmic.200500436. Fernandez-Acero, F. J., Jorge, I., Calvo, E., Vallejo, I., Carbu, M., Camafeita, E., et al. (2007). Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Archives of Microbiology, 187, 207–215. doi:10.1007/s00203-006-0188-3. Fradin, E. F., & Thomma, B. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 7, 71–86. doi:10.1111/j.1364-3703.2006.00323.x. Gold, J., & Robb, J. (1995). The role of the coating response in Craigella tomatoes infected with Verticillium dahliae, race-1 and race-2. Physiological and Molecular Plant Pathology, 47, 141–157. doi:10.1006/pmpp.1995.1048. Harris, R. V. (1927). A wilt disease of hops. In: East Malling Research Station Annual Report for 1925, Supplement II. pp. 92–93. Heinz, R., Lee, S. W., Saparno, A., Nazar, R. N., & Robb, J. (1998). Cyclical systemic colonization in Verticillium-infected tomato. Physiological and Molecular Plant Pathology, 52, 385–396. doi:10.1006/pmpp.1998.0163. Herbert, B. R., Grinyer, J., McCarthy, J. T., Isaacs, M., Harry, E. J., Nevalainen, H., et al. (2006). Improved 2-DE of microorganisms after acidic extraction. Electrophoresis, 27, 1630–1640. doi:10.1002/elps.200500753. Jamnik, P., Radisek, S., Javornik, B., & Raspor, P. (2006). 2-D Separation of Verticillium albo-atrum proteins. Acta Agriculturae Slovenica, 87, 455–460. Jorge, I., Navarro, R. M., Lenz, D., Ariza, D., Porras, C., & Jorrin, J. (2005). The Holm Oak leaf proteome: Analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity search. Proteomics, 5, 222–234. doi:10.1002/pmic.200400893. Keyworth, W. G. (1942). Verticillium wilt of the hop (Humulus lupulus). The Annals of Applied Biology, 29, 346–357. doi:10.1111/j.1744-7348.1942.tb06138.x. Kim, Y., Nandakumar, M. P., & Marten, M. R. (2007). Proteomics of filamentous fungi. Trends in Biotechnology, 25, 395–400. doi:10.1016/j.tibtech.2007.07.008. Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology, 48, 251–275. doi:10.1146/annurev.arplant.48.1.251. Lee, S. W., Mazar, R. N., Powell, D. A., & Robb, J. (1992). Reduced PAL gene expression in Verticillium-infected resistant tomato. Plant Molecular Biology, 18, 345–352. doi:10.1007/BF00034961. Matsui, Y., & Tohe, A. (1992). Yeast Rho3 and Rho4 RAS superfamily genes are necessary for bud growth, and their defect is suppressed by a high-dose of bud formation genes cdc42 and bem1. Molecular and Cellular Biology, 12, 5690–5699. Mol, L., & Scholte, K. (1995). Formation of microsclerotia of Verticillium dahliae Kleb on various plant-parts of two potato cultivars. Potato Research, 38, 143–150. doi:10.1007/BF02357927. Molloy, M. P., Brzezinski, E. E., Hang, J., McDowell, M. T., & VanBogelen, R. A. (2003). Overcoming technical and biological variation in quantitative proteomics. Proteomics, 3, 1912–1919. doi:10.1002/pmic.200300534. Paper, J. M., Scott-Craig, J. S., Adhikari, N. D., Cuom, C. A., & Walton, J. D. (2007). Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics, 7, 3171–3183. doi:10.1002/pmic.200700184. Radisek, S., Jakse, J., Simoncic, A., & Javornik, B. (2003). Characterization of Verticillium albo-atrum field isolates using pathogenicity data and AFLP analysis. Plant Disease, 87, 633–638. doi:10.1094/PDIS.2003.87.6.633. Radisek, S., Jakse, J., & Javornik, B. (2006). Genetic variability and virulence among Verticillium albo-atrum isolates from hop. European Journal of Plant Pathology, 116, 301–314. doi:10.1007/s10658-006-9061-0. Ridley, A. J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in Cell Biology, 16, 522–529. doi:10.1016/j.tcb.2006.08.006. Robb, J. (2007). Verticillium tolerance: resistance, susceptibility, or mutualism? Canadian Journal of Botany, 85, 903–910. doi:10.1139/B07-093. Rospert, S., Dubaquie, Y., & Gautschi, M. (2002). Nascent-polypeptide-associated complex. Cellular and Molecular Life Sciences, 59, 1632–1639. doi:10.1007/PL00012490. Schmitt, S., Prokisch, H., Schlunck, T., Camp, D. G., Ahting, U., Waizenegger, T., et al. (2006). Proteome analysis of mitochondrial outer membrane from Neurospora crassa. Proteomics, 6, 72–80. doi:10.1002/pmic.200402084. Sewell, G. W. F., & Wilson, J. F. (1974). Hop wilt, soil temperature and nitrogen. In: East Malling Research Station Annual Report for1973. pp. 203–204. Talboys, P. W. (1960). A culture-medium aiding the identification of Verticillium albo-atrum and V. dahliae. Plant Pathology, 9, 57–58. doi:10.1111/j.1365-3059.1960.tb01147.x. Ueda, T., Kikuchi, A., Ohga, N., Yamamoto, J., & Takai, Y. (1990). Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to RhoB p20, a RAS p21-like GTP-binding protein. Journal of Biological Chemistry, 265, 9373–9380. Walters, D. (2003). Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytologist, 159, 109–115. doi:10.1046/j.1469-8137.2003.00802.x. Wilhelm, S. (1955). Longevity of the Verticillium wilt fungus in the laboratory and in the field. Phytopathology, 45, 180–181. Yajima, W., & Kav, N. N. V. (2006). The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics, 6, 5995–6007. doi:10.1002/pmic.200600424.