Comparison of methods for handling missing data on immunohistochemical markers in survival analysis of breast cancer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambler G, Omar RZ, Royston P (2007) A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome. Stat Methods Med Res 16: 277–298
Bodner TE (2008) What improves with increased missing data imputations? Struct Equation Model: Multidiscip J 15: 651–675
Dawson SJ, Makretsov N, Blows FM, Driver KE, Provenzano E, Le QJ, Baglietto L, Severi G, Giles GG, McLean CA, Callagy G, Green AR, Ellis I, Gelmon K, Turashvili G, Leung S, Aparicio S, Huntsman D, Caldas C, Pharoah P (2010) BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer 103: 668–675
Donders AR, van der Heijden G, Stijnen T, Moons KG (2006) Review: a gentle introduction to imputation of missing values. J Clin Epidemiol 59: 1087–1091
Engels JM, Diehr P (2003) Imputation of missing longitudinal data: a comparison of methods. J Clin Epidemiol 56: 968–976
Greene FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG, Morrow M (eds) (2002) AJCC Cancer Staging Manual, 6th edn. Springer: New York, NY.
Greenland S, Finkle WD (1995) A critical look at methods for handling missing covariates in epidemiologic regression analyses. Am J Epidemiol 142: 1255–1264
Horton NJ, White IR, Carpenter J (2010) The performance of multiple imputation for missing covariates relative to complete case analysis. Stat Med 29: 1357
Kim JO, Curry J (1977) The treatment of missing data in multivariate analysis. Sociol Methods Res 6: 215–241
Little RA (1992) Regression with missing X's; a review. J Am Stat Assoc 87: 1227–1237
Marshall A, Altman DG, Royston P, Holder RL (2010) Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol 10: 7
Moons KG, Donders RA, Stijnen T, Harrell Jr FE (2006) Using the outcome for imputation of missing predictor values was preferred. J Clin Epidemiol 59: 1092–1101
Rubin DB (2004) Multiple Imputation for Non Rresponse in Surveys. John Wiley and Sons: New York
Rubin DB, Schenker N (1991) Multiple imputation in health-care databases: an overview and some applications. Stat Med 10: 585–598
Schafer JL, Graham JW (2002) Missing data: our view of the state of the art. Psychol Methods 7: 147–177
Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR (2009) Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338: b2393
Vach W (1991) Biased estimates of the odds ratio in case–control studies due to the use of ad hoc methods of correcting for missing values for confounding variables. Am J Epidemiol 134: 895–907
van Buuren S, Boshuizen HC, Knook DL (1999) Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 18: 681–694
Van der Heijden G, Donders AR, Stijnen T, Moons KG (2006) Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example. J Clin Epidemiol 59: 1102–1109