Comparison of methods for assessment of children exposure to air pollution: dispersion model, ambient monitoring, and personal samplers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ashmore MR, Dimitroulopoulou C (2009) Personal exposure of children to air pollution. Atmos Environ 43:128–141. https://doi.org/10.1016/j.atmosenv.2008.09.024
Batterman S, Ganguly R, Isakov V et al (2014) Dispersion modeling of traffic-related air pollutant exposures and health effects among children with asthma in Detroit, Michigan. Transp Res Rec 2452(1):105–113. https://doi.org/10.3141/2452-13
Branco PTBS, Alvim-Ferraz MCMM, Martins FG, Sousa SIVV (2014) The microenvironmental modelling approach to assess children’s exposure to air pollution - a review. Environ Res 135:317–332. https://doi.org/10.1016/j.envres.2014.10.002
Bravo MA, Fuentes M, Zhang Y et al (2012) Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation. Environ Res 116:1–10. https://doi.org/10.1016/j.envres.2012.04.008
Chang JC, Hanna SR (2004) Air quality model performance evaluation. Meteorol Atmos Phys 87:167–196. https://doi.org/10.1007/s00703-003-0070-7
Cyrys J, Eeftens M, Heinrich J et al (2012) Variation of NO2 and NOx concentrations between and within 36 European study areas: results from the ESCAPE study. Atmos Environ 62:374–390. https://doi.org/10.1016/j.atmosenv.2012.07.080
de Castro HA, Hacon S, Argento R et al (2007) Air pollution and respiratory diseases in the Municipality of Vitória, Espírito Santo State, Brazil. Cad Saude Publica 23:S630–S642. https://doi.org/10.1590/s0102-311x2007001600023
de Ferreyro Monticelli D, Santos JM, Dourado HO et al (2020) Assessing particle dry deposition in an urban environment by using dispersion models. Atmos Pollut Res 11:1–10. https://doi.org/10.1016/j.apr.2019.07.010
de Ferreyro Monticelli D, Santos JM, Goulart EV et al (2021) A review on the role of dispersion and receptor models in asthma research. Environ Pollut 287:117529. https://doi.org/10.1016/j.envpol.2021.117529
Dėdelė A, Miškinytė A (2016) Seasonal variation of indoor and outdoor air quality of nitrogen dioxide in homes with gas and electric stoves. Environ Sci Pollut Res 23:17784–17792. https://doi.org/10.1007/s11356-016-6978-5
Eckel SP, Berhane K, Salam MT et al (2011) Residential traffic-related pollution exposures and exhaled nitric oxide in the children’s health study. Environ Health Perspect 119:1472–1477. https://doi.org/10.1289/ehp.1103516
Favarato G, Anderson HR, Atkinson R et al (2014) Traffic-related pollution and asthma prevalence in children. Quantification of associations with nitrogen dioxide. Air Qual Atmos Heal 7:459–466. https://doi.org/10.1007/s11869-014-0265-8
Galvão ES, CostaR, N Jr et al (2019) Use of inorganic and organic markers associated with their directionality for the apportionment of highly correlated sources of particulate matter. Sci Total Environ 651:1332–1343. https://doi.org/10.1016/j.scitotenv.2018.09.263
Galvão ES, D’Azeredo Orlando MT, Santos JM, Lima AT (2020a) Uncommon chemical species in PM2.5 and PM10 and its potential use as industrial and vehicular markers for source apportionment studies. Chemosphere 240:1–9. https://doi.org/10.1016/j.chemosphere.2019.124953
Galvão ES, Reis NC, Santos JM (2020b) The role of receptor models as tools for air quality management: a case study of an industrialized urban region. Environ Sci Pollut Res 055. https://doi.org/10.1007/s11356-020-07848-8
Galvão ES, Santos JM, Lima AT et al (2018) Resonant Synchrotron X-ray Diffraction determines markers for iron-rich atmospheric particulate matter in urban region. Chemosphere 212:418–428. https://doi.org/10.1016/j.chemosphere.2018.08.111
Gauvin S, Amro S, Zmirou D et al (2001) Road traffic, NO2 exposure and respiratory function among children (VESTA study). Int J Veh Des 27:251–261
Hanna S, Chang J (2012) Acceptance criteria for urban dispersion model evaluation. Meteorol Atmos Phys 116:133–146. https://doi.org/10.1007/s00703-011-0177-1
Holnicki P, Kałuszko A, Trapp W (2016) An urban scale application and validation of the CALPUFF model. Atmos Pollut Res 7:393–402. https://doi.org/10.1016/j.apr.2015.10.016
IEMA (2019) Inventário de Emissões Atmosféricas da Região da Grande Vitória. Vitória - ES, Brazil
Jerrett M, Arain A, Kanaroglou P, Beckerman B (2005) A review and evaluation of intraurban air pollution exposure models. 185–204. https://doi.org/10.1038/sj.jea.7500388
Khreis H, de Hoogh K, Nieuwenhuijsen MJJ (2018) Full-chain health impact assessment of traffic-related air pollution and childhood asthma. Environ Int 114:365–375. https://doi.org/10.1016/j.envint.2018.03.008
Khreis H, Nieuwenhuijsen MJJ (2017) Traffic-related air pollution and childhood asthma: recent advances and remaining gaps in the exposure assessment methods. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14030312
Lawson SJ, Galbally IE, Powell JC et al (2011) The effect of proximity to major roads on indoor air quality in typical Australian dwellings. Atmos Environ 45:2252–2259. https://doi.org/10.1016/j.atmosenv.2011.01.024
Lee K, Parkhurst WJ, Xue J et al (2004) Outdoor/indoor/personal ozone exposures of children in Nashville, Tennessee. J Air Waste Manag Assoc 54:352–359. https://doi.org/10.1080/10473289.2004.10470904
Li S, Batterman S, Wasilevich E et al (2011) Association of daily asthma emergency department visits and hospital admissions with ambient air pollutants among the pediatric Medicaid population in Detroit: time-series and time-stratified case-crossover analyses with threshold effects. Environ Res 111:1137–1147. https://doi.org/10.1016/j.envres.2011.06.002
Liard R, Zureik M, Le Moullec Y et al (1999) Use of personal passive samplers for measurement of NO2, NO, and O3 levels in panel studies. Environ Res 81:339–348. https://doi.org/10.1006/enrs.1999.3993
Liu S, Ganduglia CM, Li X et al (2016) Short-term associations of fine particulate matter components and emergency hospital admissions among a privately insured population in Greater Houston. Atmos Environ 147:369–375. https://doi.org/10.1016/j.atmosenv.2016.10.021
Madsen C, Carlsen KCLK-HHKCL, Hoek G et al (2007) Modeling the intra-urban variability of outdoor traffic pollution in Oslo, Norway-A GA2LEN project. Atmos Environ 41:7500–7511. https://doi.org/10.1016/j.atmosenv.2007.05.039
Malmqvist E, Lisberg Jensen E, Westerberg K et al (2018) Estimated health benefits of exhaust free transport in the city of Malmö, Southern Sweden. Environ Int 118:78–85. https://doi.org/10.1016/j.envint.2018.05.035
Nascimento AP, Santos JM, Mill JG et al (2017) Association between the concentration of fine particles in the atmosphere and acute respiratory diseases in children. Rev Saude Publica 51:1–10. https://doi.org/10.1590/S1518-8787.2017051006523
Nascimento AP, Santos JM, Mill JG, De TT (2020) Association between the incidence of acute respiratory diseases in children and ambient concentrations of SO2, PM10 and chemical elements in fine particles. Environ Res 109619. https://doi.org/10.1016/j.envres.2020.109619
Nishimura KK, Galanter JM, Roth LA et al (2013) Early-life air pollution and asthma risk in minority children the GALA II and SAGE II studies. Am J Respir Crit Care Med 188:309–318. https://doi.org/10.1164/rccm.201302-0264OC
Perez L, Lurmann F, Wilson J et al (2012) Near-roadway pollution and childhood asthma: implications for developing “win-win” compact urban development and clean vehicle strategies. Environ Health Perspect 120:1619–1626. https://doi.org/10.1289/ehp.1104785
Physick W, Powell J, Cope M et al (2011) Measurements of personal exposure to NO2 and modelling using ambient concentrations and activity data. Atmos Environ 45:2095–2102. https://doi.org/10.1016/j.atmosenv.2011.01.063
Ragettli MS, Phuleria HC, Tsai MY et al (2015) The relevance of commuter and work/school exposure in an epidemiological study on traffic-related air pollution. J Expo Sci Environ Epidemiol 25:474–481. https://doi.org/10.1038/jes.2014.83
Ragettli MS, Tsai MY, Braun-Fahrländer C et al (2014) Simulation of population-based commuter exposure to NO2 using different air pollution models. Int J Environ Res Public Health 11:5049–5068. https://doi.org/10.3390/ijerph110505049
Salvador N, Loriato AG, Santiago A et al (2016) Study of the thermal internal boundary layer in sea breeze conditions using different parameterizations: application of the WRF model in the greater Vitória region. Rev Bras Meteorol 31:593–609. https://doi.org/10.1590/0102-7786312314b20150093
Santos JM, Reis NC, Galvão ES et al (2017) Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil. Environ Sci Pollut Res 24:22026–22039. https://doi.org/10.1007/s11356-017-9677-y
Scire JS, Strimaitis DG, Yamartino RJ (2000) A user’s guide for the CALPUFF dispersion model. Earth Tech, Inc 521:1–521. Accessible at: https://www.src.com/CALPUFF/download/CALPUFF_UsersGuide.pdf
Serpa FS, Zandonade E, Reis JL et al (2014) Prevalência de asma, rinite e eczema atópico em escolares do município de Vitória, Espirito Santo, Brasil. Rev Bras Pesq Saúde 16:107–114
Steinle S, Reis S, Sabel CE (2013) Quantifying human exposure to air pollution-moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci Total Environ 443:184–193. https://doi.org/10.1016/j.scitotenv.2012.10.098
USEPA (2017) Revision to the guideline on air quality models: enhancements to the AERMOD dispersion modeling system and incorporation of approaches to address ozone and fine particulate matter. Fed Regist 80:45339–45387
Watson AY, Bates RR, Kennedy D (1988) Assessment of human exposure to air pollution: methods, measurements, and models. In Air pollution, the automobile, and public health. National Academies Press (US)