Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
So sánh hiệu quả loại bỏ phẩm màu azo có nồng độ cao bằng thời gian lưu nước dài trong hệ thống MSBR được tăng cường sinh học bằng than hoạt tính và vật liệu bọt
Tóm tắt
Nghiên cứu hiện tại đã đánh giá hiệu suất và hiện tượng bám dính khi thêm than hoạt tính hạt (GAC) và vật liệu bọt (BioCube), như hai môi trường khác nhau, vào hệ thống phản ứng sinh học theo mẻ chuỗi màng (MSBR) trong xử lý nước thải chứa Acid Red 18 (AR 18). Các giai đoạn yếm khí, hiếu khí và thời gian lưu nước thủy lực (HRT) trong 24 h, 12 h và 72 h được xem xét cho việc loại bỏ 500 mg/L AR 18 với thời gian lưu bùn (SRT) 20 ngày bằng cách thêm riêng lên tới 35% thể tích BioCube và 8 g/L GAC vào các bể phản ứng. Dựa trên nghiên cứu động học, nồng độ phẩm màu còn lại là 63 mg/L (tỷ lệ loại bỏ 87%) và 115 mg/L (tỷ lệ loại bỏ 77%) đã được báo cáo trong các bể phản ứng MSBR sử dụng GAC và BioCube (GAC-MSBR và BioCube-MSBR), tương ứng. Sự suy giảm dần của tiềm năng oxy hóa-khử về −416 mV xác nhận việc loại bỏ phẩm màu tốt hơn trong GAC-MSBR so với BioCube-MSBR, trong đó ghi nhận sự giảm đột ngột xuống −354 mV. Hình thái có thể giải thích việc điều trị sinh học tốt hơn trong GAC-MSBR bên cạnh quá trình hấp phụ. Sản phẩm vi sinh vật hòa tan (SMP) lần lượt là 126,92 mg/L và 395,18 mg/L cho GAC-MSBR và BioCube-MSBR. Nhu cầu oxy hóa học (COD) và SMP cho thấy chất lượng nước GAC-MSBR tốt hơn so với các bể khác.
Từ khóa
#Than hoạt tính #vật liệu bọt #loại bỏ phẩm màu azo #hệ thống MSBR #xử lý nước thảiTài liệu tham khảo
Ahmad R, Guo J, Kim J (2019) Structural characteristics of hazardous organic dyes and relationship between membrane fouling and organic removal efficiency in fluidized ceramic membrane reactor. J Clean Prod 232:608–616. https://doi.org/10.1016/j.jclepro.2019.05.244
APHA, AWWA, WPCF (2017) Standard methods for the examination of water and wastewater, 23rd edn. American public health association, Washington
Ceretta MB, Nercessian D, Wolski EA (2021) Current trends on role of biological treatment in integrated treatment technologies of textile wastewater. Front Microbiol 12:651025. https://doi.org/10.3389/fmicb.2021.651025
Chen C, Guo WS, Ngo HH, Chang SW, Nguyen DD, Zhang J, Liang S, Guo JB, Zhang XB (2018) Effects of C/N ratio on the performance of a hybrid sponge-assisted aerobic moving bed-anaerobic granular membrane bioreactor for municipal wastewater treatment. Bioresour Technol 247:340–346. https://doi.org/10.1016/j.biortech.2017.09.062
Cheng H, Li Y, Kato H, Li YY (2020) Enhancement of sustainable flux by optimizing filtration mode of a high-solid anaerobic membrane bioreactor during long-term continuous treatment of food waste. Water Res 168:115195. https://doi.org/10.1016/j.watres.2019.115195
Clements M, Haarhoff J (2004) Practical experiences with granular activated carbon (GAC) at the Rietvlei water treatment plant. Water SA 30(1):89–96. https://doi.org/10.4314/wsa.v30i1.5031
Donlon B, Colleran E (1993) A comparison of different methods to determine the hydrophobicity of acetogenic bacteria. J Microbiol Methods 17(1):27–37. https://doi.org/10.1016/0167-7012(93)90076-T
Du Bois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017
Duklan N, Singh P, Chamoli P, Raina KK, Shukla RK (2022) Photodegradation and electrolytic behaviour investigations of cationic amphiphiles based self-assembled non-aqueous layered lamellar interfaces. J Mater Sci Mater 33:4237–4254. https://doi.org/10.1007/s10854-021-07618-3
Elbarbary AM, Bekhit M, El Fadl FIA (2022) Synthesis and characterization of magnetically retrievable Fe3O4/polyvinylpyrrolidone/polystyrene nanocomposite catalyst for efficient catalytic oxidation degradation of dyes pollutants. J Inorg Organomet Polym 32:383–398. https://doi.org/10.1007/s10904-021-02138-3
Emaminejad SA, Avval Saffar S, Bonakdarpour B (2019) Gaining deeper insights into the bioflocculation process occurring in a high loaded membrane bioreactor used for the treatment of synthetic greywater. Chemosphere. 230:316–326. https://doi.org/10.1016/j.chemosphere.2019.04.178
Fan B, Huang A (2002) Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment. Environ Sci Technol 36(23):5245–5251. https://doi.org/10.1021/es025789n
Farsani MH, Yengejeh RJ, Mirzahosseini AH, Monavari M, Hassani A, Mengelizadeh N (2022) Effective leachate treatment by a pilot-scale submerged electro-membrane bioreactor. Environ Sci Pollut Res 29:9218–9231. https://doi.org/10.1007/s11356-021-16196-0
Frølund B, Griebe T, Nielsen PH (1995) Enzymatic activity in the activated-sludge floc matrix. Environ Biotechnol 43:755–761. https://doi.org/10.1007/BF00164784
Gur-Reznik S, Katz I, Dosoretz CG (2008) Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Res 42(6-7):1595–1605. https://doi.org/10.1016/j.watres.2007.10.004
Hai FI, Yamamoto K, Nakajima F, Fukushi K (2011) Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment. Water Res 45(6):2199–2206. https://doi.org/10.1016/j.watres.2011.01.013
Hai FI, Yamamoto K, Nakajima F, Fukushi K (2012) Application of a GAC-coated hollow fiber module to couple enzymatic degradation of dye on membrane to whole cell biodegradation within a membrane bioreactor. J Membr Sci 389:67–75. https://doi.org/10.1016/j.memsci.2011.10.016
Hamidi F, Dehghani MH, Kasraee M, Salari M, Shiri L, Mahvi AH (2022) Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm. Sci Rep 12(1):4761. https://doi.org/10.1038/s41598-022-08769-x
Han F, Ye W, Wei D, Xu W, Du B, Wei Q (2018) Simultaneous nitrification-denitrification and membrane fouling alleviation in a submerged biofilm membrane bioreactor with coupling of sponge and biodegradable PBS carrier. Bioresour Technol 270:156–165. https://doi.org/10.1016/j.biortech.2018.09.026
IWWG (2010) Iran water and wastewater guidelines, environmental criteria of treated waste water and return flow reuse of Iran, Vice presidency for strategic planning and supervision of islamic republic of Iran. 535
Jamal Khan S, Ilyas S, Javid S, Visvanathan C, Jegatheesan V (2011) Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresour Technol 102(9):5331–5336. https://doi.org/10.1016/j.biortech.2010.09.100
Kim IS, Jang N (2006) The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR). Water Res 40(14):2756–2764. https://doi.org/10.1016/j.watres.2006.03.036
Kimura K, Watanabe Y, Ohkuma N (2001) A novel biofilm-membrane reactor for advanced drinking water treatment – pilot scale study. Water Sci Technol 1(5-6):157–168. https://doi.org/10.2166/ws.2001.0110
Lee S, Suwarno SR, Quek BWH, Kim L, Wu B, Chong TH (2019) A comparison of gravity-driven membrane (GDM) reactor and biofiltration + GDM reactor for seawater reverse osmosis desalination pretreatment. Water Res 154:72–83. https://doi.org/10.1016/j.watres.2019.01.044
Li Z, Song W, Liu F, Ding Y, You H, Liu H, Qi P, Jin C (2018) The characteristic evolution of soluble microbial product and its effects on membrane fouling during the development of sponge membrane bioreactor coupled with fiber bundle anoxic bio-filter for treating saline wastewater. Bioresour Technol 266:51–59. https://doi.org/10.1016/j.biortech.2018.06.067
Liu X, Lu H, Li Q, Fu Z, Tan F, Wang X, Zhou J (2022) Magnetic molecularly imprinted polymers for selectively adsorbing flavins and their effects on bioremoval of Acid Red 18 and Cr(VI). J Chem Technol Biotechnol 97(6):2047–2054. https://doi.org/10.1002/jctb.7075
Lowry OH, Rosenburgh NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275
Lu P, Wang X, Tang Y, Ding A, Yang H, Guo J, Cui Y, Ling C (2020) Granular activated carbon assisted nitrate-dependent anaerobic methane oxidation-membrane bioreactor: strengthening effect and mechanisms. Environ Int 138:105675. https://doi.org/10.1016/j.envint.2020.105675
Lu H, Zhou Y, Fu Z, Wang X, Zhou J, Guo W (2022) Mutual interaction between the secreted flavins and immobilized quinone in anaerobic removal of high-polarity aromatic compounds containing nitrogen by Shewanella sp. RQs-106. J Hazard Mater 431:128595. https://doi.org/10.1016/j.jhazmat.2022.128595
Maliwan T, Pungrasmi W, Lohwacharin J (2021) Effects of microplastic accumulation on floc characteristics and fouling behavior in a membrane bioreactor. J Hazard Mater 411:124991. https://doi.org/10.1016/j.jhazmat.2020.124991
Massoompour AR, Borghei SM, Raie M (2020) Enhancement of biological nitrogen removal performance using novel carriers based on the recycling of waste materials. Water Res 170:115340
Meng F, Zhang S, Oh Y, Zhou Z, Shin HS, Chae SR (2017) Fouling in membrane bioreactors: an updated review. Water Res 114:151–180. https://doi.org/10.1016/j.watres.2017.02.006
Nguyen LN, Hai FI, Price WE, Leusch FDL, Roddick F, Ngo HH, Guo W, Magram SF, Nghiem LD (2014) The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor. Bioresour Technol 167:169–177. https://doi.org/10.1016/j.biortech.2014.05.125
Nguyen TT, Bui XT, Vo TDH, Nguyen DD, Nguyen PD, Do HLC, Ngo HH, Guo W (2016) Performance and membrane fouling of two types of laboratory-scale submerged membrane bioreactors for hospital wastewater treatment at low flux condition. Sep Purif Technol 165:123–129. https://doi.org/10.1016/j.seppur.2016.03.051
Nguyen TT, Bui XT, Luu VP, Nguyen PD, Guo W, Ngo HH (2017) Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater: comparison between hollow fiber and flat sheet membrane systems. Bioresour Technol 240:42–49. https://doi.org/10.1016/j.biortech.2017.02.118
Sabaghian M, Mehrnia MR, Esmaieli M, Nourmohammadi D (2018) Influence of static mixer on the formation and performance of dynamic membrane in a dynamic membrane bioreactor. Sep Purif Technol 206:324–334. https://doi.org/10.1016/j.seppur.2018.06.026 .https://www.sciencedirect.com/science/article/pii/S1383586618306099
Samsami S, Mohamadi M, Sarrafzadeh MH, Rene ER, Firoozbahr M (2020) Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf Environ 143:138–163. https://doi.org/10.1016/j.psep.2020.05.034
Sharghi EA, Bonakdarpour B (2013) Biological treatment of oilfield wastewater (produced water) in membrane bioreactor. PhD Thesis of. Amirkabir University of Technology, Iran
Sharifi A, Rajabi Abhari A, Imanzadeh M, Mahmoodi Z, Farrokhzadeh S (2022) Modeling RSM of photocatalytic treatment of Acid Red 18 pollutant using ZnO–Cr nano-photocatalyst, kinetic studies, and energy management. Can J Chem 100(4):285–295. https://doi.org/10.1139/cjc-2021-0230
Shin HS, Kang ST, Nam SY (2000) Effect of carbohydrates to protein ratio in EPS on sludge settling characteristics. Biotechnol Bioprocess Eng 5:460–464. https://doi.org/10.1007/BF02931948
Song Z, Zhang X, Ngo HH, Guo W, Song P, Zhang Y, Wen H, Guo J (2019) Zeolite powder based polyurethane sponges as biocarriers in moving bed biofilm reactor for improving nitrogen removal of municipal wastewater. Sci Total Environ 651:1078–1086. https://doi.org/10.1016/j.scitotenv.2018.09.173
Taheri M (2022) Techno-economical aspects of electrocoagulation optimization in three acid azo dyes’ removal comparison. Clean Chem Eng 2:100007. https://doi.org/10.1016/j.clce.2022.100007
Taheri M, Alavi Moghaddam MR, Arami M (2013) Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models. J Environ Manag 128:798–806. https://doi.org/10.1016/j.jenvman.2013.06.029
Taheri M, Alavi Moghaddam MR, Arami M (2014) A comparative study on removal of four types of acid azo dyes using electrocoagulation process. Environ Eng Manag J 13(3):557–564. https://doi.org/10.30638/eemj.2014.059
Taheri M, Alavi Moghaddam MR, Arami M (2015) Improvement of the /Taguchi/ design optimization using artificial intelligence in three acid azo dyes removal by electrocoagulation. Environ Prog Sustain Energy 34(6):1568–1575. https://doi.org/10.1002/ep.12145
Taheri M, Fallah N, Nasernejad B (2021) Assessment of nanoclay-sludge ratios in sequencing batch membrane bioreactors: azo dye removal and fouling alleviation. J Water Process Eng 41:101969. https://doi.org/10.1016/j.jwpe.2021.101969
Tang X, Pronk W, Ding A, Cheng X, Wang J, Xie B, Li G, Liang H (2018) Coupling GAC to ultra-low-pressure filtration to modify the biofouling layer and bio-community: flux enhancement and water quality improvement. Chem Eng J 333:289–299. https://doi.org/10.1016/j.cej.2017.09.111
Thamaraiselvan C, Noel M (2014) Membrane processes for dye wastewater treatment; recent progress in fouling control. Crit Rev Environ Sci Technol 45(10):1007–1040. https://doi.org/10.1080/10643389.2014.900242
Vaigan AA, Alavi Moghaddam MR, Hashemi H (2009) Effect of GAC concentration on SBR performance for treatment of high strength wastewater containing a reactive dye. International conference on emerging technologies in environmental science and engineering, Aligarh India
Wang S, Ma C, Pang C, Hu Z, Wang W (2018) Membrane fouling and performance of anaerobic ceramic membrane bioreactor treating phenol- and quinoline-containing wastewater: granular activated carbon vs polyaluminum chloride. Environ Sci Pollut Res 26:34167–34176. https://doi.org/10.1007/s11356-018-3802-4
World-dye (2022). http://www.worlddyevariety.com/acid-dyes/acid-red-18.html. Accessed 2022/07/29
Wu B, Li Y, Lim W, Lee SL, Guo Q, Fane AG, Liu Y (2017) Single-stage versus two-stage anaerobic fluidized bed bioreactors in treating municipal wastewater: performance, foulant characteristics, and microbial community. Chemosphere 171:158–167. https://doi.org/10.1016/j.chemosphere.2016.12.069
Xing W, Ngo HH, Guo W, Wu Z, Nguyen TT, Cullum P, Listowski A, Yang N (2010) Enhancement of the performance of anaerobic fluidized bed bioreactors (AFBBRs) by a new starch based flocculant. Sep Purif Technol 72(2):140–146. https://doi.org/10.1016/j.seppur.2010.01.015
Yan S, Cheng KY, Ginige MP, Zheng G, Zhou L, Kaksonen AH (2021) Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control. J Hazard Mater 402:123770. https://doi.org/10.1016/j.jhazmat.2020.123770
Yang PY, Cao K, Kim SJ (2002) Entrapped mixed microbial cell process for combined secondary and tertiary wastewater treatment. Water Environ Res 74:226. https://doi.org/10.2175/106143002X139947
Yang Y, Xia S, Hermanowicz SW (2015) Full-scale engineering application of MBR system in municipal wastewater treatment plants around China’s Tai Lake basin. Fresenius Environ Bull 24(11):3616–3626
Yang K, Abu-Reesh IM, He Z (2022) Enhancing the degradation of selected recalcitrant organic contaminants through integrated cathode and anode processes in microbial electrochemical systems: a frontier review. J Hazard Mater Lett 3:100057. https://doi.org/10.1016/j.hazl.2022.100057
Zhou X, Wang G, Ge D, Yin Z (2020) Development of aerobic methane oxidation, denitrification coupled to methanogenesis (AMODM) in a microaerophilic expanded granular sludge blanket biofilm reactor. J Environ Manag 275:111280. https://doi.org/10.1016/j.jenvman.2020.111280
Ziemba C, Larivé O, Reynaert E, Huisman T, Morgenroth E (2020) Linking transformations of organic carbon to post-treatment performance in a biological water recycling system. Sci Total Environ 721:137489. https://doi.org/10.1016/j.scitotenv.2020.137489