Comparison of five methods for parameter estimation under Taylor’s power law
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, 1982, Variability in the abundance of animal and plant species, Nature, 296, 245, 10.1038/296245a0
Ballantyne, 2007, The observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation, Oikos, 116, 174, 10.1111/j.2006.0030-1299.15383.x
Ballantyne, 2005, The upper limit for the exponent of Taylor’s power law is a consequence of deterministic population growth, Evol. Ecol. Res., 7, 1213
Bates, 1988
Campbell, 1974, Temperature requirements of some aphids and their parasites, J. Appl. Ecol., 11, 431, 10.2307/2402197
Charnes, 1976, The equivalence of generalized least squares and maximum likelihood estimates in the exponential family, J. Am. Stat. Assoc., 71, 169, 10.1080/01621459.1976.10481508
Cheng, 2017, Internode morphometrics and allometry of Tonkin Cane Pseudosasa amabilis McClure, Ecol. Evol., 10.1002/ece3.3483
Cohen, 2015, Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling, Proc. Natl. Acad. Sci. U. S. A., 112, 7749, 10.1073/pnas.1503824112
Cohen, 2016, Taylor’s law and related allometric power laws in New Zealand mountain beech forests: the roles of space, time and environment, Oikos, 125, 1342, 10.1111/oik.02622
de Jong, 2010, A biophysical interpretation of temperature-dependent body size in Drosophila aldrichi and D buzzatii, J. Therm. Biol., 35, 85, 10.1016/j.jtherbio.2009.12.001
Deutsch, 2008, Impacts of climate warming on terrestrial ectotherms across latitude, Proc. Natl. Acad. Sci. U. S. A., 105, 6668, 10.1073/pnas.0709472105
Eisler, 2008, Fluctuation scaling in complex systems: Taylor’s law and beyond, Adv. Phys., 57, 89, 10.1080/00018730801893043
Forkman, 2009, Estimator and tests for common coefficients of variation in normal distributions, Commun. Stat. Theor. Methods, 38, 233, 10.1080/03610920802187448
Fronczak, 2010, Origins of Taylor’s power law for fluctuation scaling in complex systems, Phys. Rev. E, 81, 066112, 10.1103/PhysRevE.81.066112
Gielis, 2003, A general geometric transformation that unifies a wide range of natural and abstract shapes, Am. J. Bot., 90, 333, 10.3732/ajb.90.3.333
Gielis, 2017
Giometto, 2015, Sample and population exponents of generalized Taylor’s law, Proc. Natl. Acad. Sci. U. S. A., 112, 7755, 10.1073/pnas.1505882112
Hastie, 2009
Hendricks, 1936, The sampling distribution of the coefficient of variation, Ann. Math. Stat., 7, 129, 10.1214/aoms/1177732503
Imre, 2016, Fractals and the Korcak-law: a history and a correction, Eur. Phys. J. H, 41, 69, 10.1140/epjh/e2016-60039-8
Kilpatrick, 2003, Species interactions can explain Taylor’s power law for ecological time series, Nature, 422, 65, 10.1038/nature01471
Koopmans, 1964, Confidence intervals of the coefficient of variation for the normal and log normal distributions, Biometrika, 51, 25, 10.1093/biomet/51.1-2.25
Kuang, 2012, Testing the rate isomorphy hypothesis using five statistical methods, Insect Sci., 19, 121, 10.1111/j.1744-7917.2011.01428.x
Limpert, 2001, Log-normal distributions across the sciences: keys and clues, Bioscience, 51, 341, 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
Lin, 2016, A geometrical model for testing bilateral symmetry of bamboo leaf with a simplified Gielis equation, Ecol. Evol., 6, 6798, 10.1002/ece3.2407
Newman, 2005, Power laws, Pareto distributions and Zipf’s law, Contemp. Phys., 46, 323, 10.1080/00107510500052444
R Core Team, 2015
Ratcliff, 2002, Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability, Psyc. B Rev., 9, 438, 10.3758/BF03196302
Ratkowsky, 2017, Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites, Ann. Entomol. Soc. Am., 110, 302, 10.1093/aesa/saw098
Ratkowsky, 2005, Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins, J. Theor. Biol., 233, 351, 10.1016/j.jtbi.2004.10.016
Ratkowsky, 1983
Ratkowsky, 1990
Rosso, 1993, An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model, J. Theor. Biol., 162, 447, 10.1006/jtbi.1993.1099
Sawyer, 1989, Inconstancy of Taylor’s b: simulated sampling with different quadrat sizes and spatial distributions, Popul. Ecol., 31, 11, 10.1007/BF02515802
Sharpe, 1977, Reaction kinetics of poikilotherm development, J. Theor. Biol., 64, 649, 10.1016/0022-5193(77)90265-X
Shi, 2010, How to compare the lower developmental thresholds, Environ. Entomol., 39, 2033, 10.1603/EN10136
Shi, 2013, The general ontogenetic growth model is inapplicable to crop growth, Ecol. Model., 266, 1, 10.1016/j.ecolmodel.2013.06.025
Shi, 2014, An optimization approach to the two-circle method of estimating ground-dwelling arthropod densities, Fla. Entomol., 97, 644, 10.1653/024.097.0242
Shi, 2015, Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant, Ecol. Evol., 5, 4578, 10.1002/ece3.1728
Shi, 2016, Dispersal distance determines the exponent of the spatial Taylor’s power law, Ecol. Model., 335, 48, 10.1016/j.ecolmodel.2016.05.008
Shi, 2017, Comparison of two ontogenetic growth equations for animals and plants, Ecol. Model., 349, 1, 10.1016/j.ecolmodel.2017.01.012
Smith, 1938, An empirical law describing heterogeneity in the yields of agricultural crops, J. Agric. Sci., 28, 1, 10.1017/S0021859600050516
Thompson, 1917
Uvarov, 1931, Insects and climate, Trans. Entomol. Soc. Lond., 79, 1, 10.1111/j.1365-2311.1931.tb00696.x
Vangel, 1996, Confidence intervals for a normal coefficient of variation, Am. Stat., 15, 21, 10.1080/00031305.1996.10473537
Xiao, 2015, A process-independent explanation for the general form of Taylor’s law, Am. Nat., 186, E51, 10.1086/682050
Yin, 2003, A flexible sigmoid function of determinate growth, Ann. Bot. Lond., 91, 361, 10.1093/aob/mcg029