Comparison of five methods for parameter estimation under Taylor’s power law

Ecological Complexity - Tập 32 - Trang 121-130 - 2017
Peijian Shi1, David A. Ratkowsky2, Ningtao Wang3, Yang Li4, Lei Zhao5, Gadi V. P. Reddy6, Bai-Lian Li7
1Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forest University, Nanjing 210037, China
2Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart, Tasmania 7001, Australia
3Department of Biostatistics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
4Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN 55812, USA
5Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, KS 66047, USA
6Western Triangle Agricultural Research Centre, Montana State University, Conrad, MT 59425, USA
7Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521-0124 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, 1982, Variability in the abundance of animal and plant species, Nature, 296, 245, 10.1038/296245a0

Ballantyne, 2007, The observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation, Oikos, 116, 174, 10.1111/j.2006.0030-1299.15383.x

Ballantyne, 2005, The upper limit for the exponent of Taylor’s power law is a consequence of deterministic population growth, Evol. Ecol. Res., 7, 1213

Bates, 1988

Campbell, 1974, Temperature requirements of some aphids and their parasites, J. Appl. Ecol., 11, 431, 10.2307/2402197

Charnes, 1976, The equivalence of generalized least squares and maximum likelihood estimates in the exponential family, J. Am. Stat. Assoc., 71, 169, 10.1080/01621459.1976.10481508

Cheng, 2017, Internode morphometrics and allometry of Tonkin Cane Pseudosasa amabilis McClure, Ecol. Evol., 10.1002/ece3.3483

Cohen, 2015, Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling, Proc. Natl. Acad. Sci. U. S. A., 112, 7749, 10.1073/pnas.1503824112

Cohen, 2016, Taylor’s law and related allometric power laws in New Zealand mountain beech forests: the roles of space, time and environment, Oikos, 125, 1342, 10.1111/oik.02622

de Jong, 2010, A biophysical interpretation of temperature-dependent body size in Drosophila aldrichi and D buzzatii, J. Therm. Biol., 35, 85, 10.1016/j.jtherbio.2009.12.001

Deutsch, 2008, Impacts of climate warming on terrestrial ectotherms across latitude, Proc. Natl. Acad. Sci. U. S. A., 105, 6668, 10.1073/pnas.0709472105

Eisler, 2008, Fluctuation scaling in complex systems: Taylor’s law and beyond, Adv. Phys., 57, 89, 10.1080/00018730801893043

Forkman, 2009, Estimator and tests for common coefficients of variation in normal distributions, Commun. Stat. Theor. Methods, 38, 233, 10.1080/03610920802187448

Fronczak, 2010, Origins of Taylor’s power law for fluctuation scaling in complex systems, Phys. Rev. E, 81, 066112, 10.1103/PhysRevE.81.066112

Gielis, 2003, A general geometric transformation that unifies a wide range of natural and abstract shapes, Am. J. Bot., 90, 333, 10.3732/ajb.90.3.333

Gielis, 2017

Giometto, 2015, Sample and population exponents of generalized Taylor’s law, Proc. Natl. Acad. Sci. U. S. A., 112, 7755, 10.1073/pnas.1505882112

Hastie, 2009

Hendricks, 1936, The sampling distribution of the coefficient of variation, Ann. Math. Stat., 7, 129, 10.1214/aoms/1177732503

Imre, 2016, Fractals and the Korcak-law: a history and a correction, Eur. Phys. J. H, 41, 69, 10.1140/epjh/e2016-60039-8

Kilpatrick, 2003, Species interactions can explain Taylor’s power law for ecological time series, Nature, 422, 65, 10.1038/nature01471

Koopmans, 1964, Confidence intervals of the coefficient of variation for the normal and log normal distributions, Biometrika, 51, 25, 10.1093/biomet/51.1-2.25

Kuang, 2012, Testing the rate isomorphy hypothesis using five statistical methods, Insect Sci., 19, 121, 10.1111/j.1744-7917.2011.01428.x

Limpert, 2001, Log-normal distributions across the sciences: keys and clues, Bioscience, 51, 341, 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2

Lin, 2016, A geometrical model for testing bilateral symmetry of bamboo leaf with a simplified Gielis equation, Ecol. Evol., 6, 6798, 10.1002/ece3.2407

Newman, 2005, Power laws, Pareto distributions and Zipf’s law, Contemp. Phys., 46, 323, 10.1080/00107510500052444

R Core Team, 2015

Ratcliff, 2002, Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability, Psyc. B Rev., 9, 438, 10.3758/BF03196302

Ratkowsky, 2017, Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites, Ann. Entomol. Soc. Am., 110, 302, 10.1093/aesa/saw098

Ratkowsky, 2005, Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins, J. Theor. Biol., 233, 351, 10.1016/j.jtbi.2004.10.016

Ratkowsky, 1983

Ratkowsky, 1990

Rosso, 1993, An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model, J. Theor. Biol., 162, 447, 10.1006/jtbi.1993.1099

Sawyer, 1989, Inconstancy of Taylor’s b: simulated sampling with different quadrat sizes and spatial distributions, Popul. Ecol., 31, 11, 10.1007/BF02515802

Sharpe, 1977, Reaction kinetics of poikilotherm development, J. Theor. Biol., 64, 649, 10.1016/0022-5193(77)90265-X

Shi, 2010, How to compare the lower developmental thresholds, Environ. Entomol., 39, 2033, 10.1603/EN10136

Shi, 2013, The general ontogenetic growth model is inapplicable to crop growth, Ecol. Model., 266, 1, 10.1016/j.ecolmodel.2013.06.025

Shi, 2014, An optimization approach to the two-circle method of estimating ground-dwelling arthropod densities, Fla. Entomol., 97, 644, 10.1653/024.097.0242

Shi, 2015, Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant, Ecol. Evol., 5, 4578, 10.1002/ece3.1728

Shi, 2016, Dispersal distance determines the exponent of the spatial Taylor’s power law, Ecol. Model., 335, 48, 10.1016/j.ecolmodel.2016.05.008

Shi, 2017, Comparison of two ontogenetic growth equations for animals and plants, Ecol. Model., 349, 1, 10.1016/j.ecolmodel.2017.01.012

Smith, 1938, An empirical law describing heterogeneity in the yields of agricultural crops, J. Agric. Sci., 28, 1, 10.1017/S0021859600050516

Taylor, 1961, Aggregation, variance and the mean, Nature, 189, 732, 10.1038/189732a0

Thompson, 1917

Uvarov, 1931, Insects and climate, Trans. Entomol. Soc. Lond., 79, 1, 10.1111/j.1365-2311.1931.tb00696.x

Vangel, 1996, Confidence intervals for a normal coefficient of variation, Am. Stat., 15, 21, 10.1080/00031305.1996.10473537

Xiao, 2015, A process-independent explanation for the general form of Taylor’s law, Am. Nat., 186, E51, 10.1086/682050

Yin, 2003, A flexible sigmoid function of determinate growth, Ann. Bot. Lond., 91, 361, 10.1093/aob/mcg029

Zhao, 2013, Solving the pitfalls of pitfall trapping: a two-circle method for density estimation of ground-dwelling arthropods, Methods Ecol. Evol., 4, 865, 10.1111/2041-210X.12083