Comparison of electrophysiological and motility assays to study anthelmintic effects in Caenorhabditis elegans
Tài liệu tham khảo
Ardelli, 2009, A comparison of the effects of ivermectin and moxidectin on the nematode Caenorhabditis elegans, Vet. Parasitol., 165, 96, 10.1016/j.vetpar.2009.06.043
Auner, 2019, Chemical-PDMS binding kinetics and implications for bioavailability in microfluidic devices, Lab Chip, 19, 864, 10.1039/C8LC00796A
Avery, 1990, Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans, J. Exp. Zool., 253, 263, 10.1002/jez.1402530305
Avery, 2012, C. elegans feeding, WormBook, 1
Blanchard, 2018, Deciphering the molecular determinants of cholinergic anthelmintic sensitivity in nematodes: when novel functional validation approaches highlight major differences between the model Caenorhabditis elegans and parasitic species, PLoS Pathog., 14, 10.1371/journal.ppat.1006996
Blanco, 2018, Diisopropylphenyl-imidazole (DII): a new compound that exerts anthelmintic activity through novel molecular mechanisms, PLoS Neglected Trop. Dis., 12, 10.1371/journal.pntd.0007021
Brownlee, 1997, Actions of the anthelmintic ivermectin on the pharyngeal muscle of the parasitic nematode, Ascaris suum, Parasitology, 115, 553, 10.1017/S0031182097001601
Burns, 2015, Caenorhabditis elegans is a useful model for anthelmintic discovery, Nat. Commun., 6, 7485, 10.1038/ncomms8485
Bygarski, 2014, Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: implications for control of drug resistant parasitic nematodes, Int. J. Parasitol. Drugs Drug Resist., 4, 143, 10.1016/j.ijpddr.2014.06.002
Calahorro, 2019, Neuroligin tuning of pharyngeal pumping reveals extrapharyngeal modulation of feeding in Caenorhabditis elegans, J. Exp. Biol., 222, jeb189423
Castro, 2020, A new antagonist of Caenorhabditis elegans glutamate-activated chloride channels with anthelmintic activity, Front. Neurosci., 14, 879, 10.3389/fnins.2020.00879
Colquhoun, 1991, The pharmacology of cholinoceptors on the somatic muscle cells of the parasitic nematode Ascaris suum, J. Exp. Biol., 158, 509, 10.1242/jeb.158.1.509
Cook, 2006, Electrophysiological recordings from the pharynx, WormBook, 1
Culetto, 2004, The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit, J. Biol. Chem., 279, 42476, 10.1074/jbc.M404370200
Cully, 1994, Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans, Nature, 371, 707, 10.1038/371707a0
Demeler, 2014, Measuring the effect of avermectins and milbemycins on somatic muscle contraction of adult Haemonchus contortus and on motility of Ostertagia circumcincta in vitro, Parasitology, 141, 948, 10.1017/S0031182013002291
Dent, 1997, avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans, EMBO J., 16, 5867, 10.1093/emboj/16.19.5867
Dent, 2000, The genetics of ivermectin resistance in Caenorhabditis elegans, Proc. Natl. Acad. Sci. U. S. A., 97, 2674, 10.1073/pnas.97.6.2674
Diawara, 2013, Association between response to albendazole treatment and β-tubulin genotype frequencies in soil-transmitted helminths, PLoS Neglected Trop. Dis., 7, e2247, 10.1371/journal.pntd.0002247
Ding, 2017, Effective drug combination for Caenorhabditis elegans nematodes discovered by output-driven feedback system control technique, Sci. Adv., 3, 10.1126/sciadv.aao1254
Ferreira, 2015, A new methodology for evaluation of nematode viability, BioMed Res. Int., 2015, 879263, 10.1155/2015/879263
Fleming, 1997, Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits, J. Neurosci., 17, 5843, 10.1523/JNEUROSCI.17-15-05843.1997
Franks, 2006, Anatomy, physiology and pharmacology of Caenorhabditis elegans pharynx: a model to define gene function in a simple neural system, Invertebr. Neurosci., 6, 105, 10.1007/s10158-006-0023-1
Geary, 1993, Haemonchus contortus: ivermectin-induced paralysis of the pharynx, Exp. Parasitol., 77, 88, 10.1006/expr.1993.1064
Gill, 1991, Detection of resistance to ivermectin in Haemonchus contortus, Int. J. Parasitol., 21, 771, 10.1016/0020-7519(91)90144-V
Glendinning, 2011, Glutamate-gated chloride channels of Haemonchus contortus restore drug sensitivity to ivermectin resistant Caenorhabditis elegans, PloS One, 6, 10.1371/journal.pone.0022390
Gomez-Sjoberg, 2010, Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications, Anal. Chem., 82, 8954, 10.1021/ac101870s
Gökaltun, 2019, Simple surface modification of poly(dimethylsiloxane) via surface segregating smart polymers for biomicrofluidics, Sci. Rep., 9, 7377, 10.1038/s41598-019-43625-5
Gunderson, 2020, In vitro screening methods for parasites: the wMicroTracker & the WormAssay, MicroPubl. Biol.
Hirama H, Satoh T, Sugiura S, Shin K, Onuki-Nagasaki R, Kanamori T, Inoue T. Glass-based organ-on-a-chip device for restricting small molecular absorption. J. Biosci. Bioeng. 127(5):641-646.
Holden-Dye, 2006, Actions of glutamate and ivermectin on the pharyngeal muscle of Ascaridia galli: a comparative study with Caenorhabditis elegans, Int. J. Parasitol., 36, 395, 10.1016/j.ijpara.2005.11.006
Holden-Dye, 2014, 1
Hotez, 2014, The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases, PLoS Neglected Trop. Dis., 8, 10.1371/journal.pntd.0002865
Hu, 2013, NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of Caenorhabditis elegans adult and larvae, PloS One, 8
Hu, 2014, StyletChip: a microfluidic device for recording host invasion behaviour and feeding of plant parasitic nematodes, Lab Chip, 14, 2447, 10.1039/C4LC00292J
Huang, 2019, Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans, eLife, 8, 10.7554/eLife.43059
Kashyap, 2019, Emodepside has sex-dependent immobilizing effects on adult Brugia malayi due to a differentially spliced binding pocket in the RCK1 region of the SLO-1 K channel, PLoS Pathog., 15, 10.1371/journal.ppat.1008041
Kass, 1980, Avermectin B1a, a paralyzing anthelmintic that affects interneurons and inhibitory motoneurons in Ascaris, Proc. Natl. Acad. Sci. U. S. A., 77, 6211, 10.1073/pnas.77.10.6211
Kearn, 2014, Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones, Pestic. Biochem. Physiol., 109, 44, 10.1016/j.pestbp.2014.01.004
Kotze, 2014, Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions, Int. J. Parasitol. Drugs Drug Resist., 4, 164, 10.1016/j.ijpddr.2014.07.007
Krücken, 2017, Reduced efficacy of albendazole against Ascaris lumbricoides in Rwandan schoolchildren, Int. J. Parasitol. Drugs Drug Resist., 7, 262, 10.1016/j.ijpddr.2017.06.001
Lai, 2014, A novel high-throughput nematicidal assay using embryo cells and larvae of Caenorhabditis elegans, Exp. Parasitol., 139, 33, 10.1016/j.exppara.2014.02.012
Lespine, 2007, Interaction of macrocyclic lactones with P-glycoprotein: structure-affinity relationship, Eur. J. Pharmaceut. Sci., 30, 84, 10.1016/j.ejps.2006.10.004
Liu, 2019, Screening of a drug repurposing library with a nematode motility assay identifies promising anthelmintic hits against Cooperia oncophora and other ruminant parasites, Vet. Parasitol., 265, 15, 10.1016/j.vetpar.2018.11.014
Lloberas, 2013, Comparative tissue pharmacokinetics and efficacy of moxidectin, abamectin and ivermectin in lambs infected with resistant nematodes: impact of drug treatments on parasite P-glycoprotein expression, Int. J. Parasitol. Drugs Drug Resist., 3, 20, 10.1016/j.ijpddr.2012.11.001
Lockery, 2012, A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans, Lab Chip, 12, 2211, 10.1039/c2lc00001f
Lustigman, 2012, A research agenda for helminth diseases of humans: the problem of helminthiases, PLoS Neglected Trop. Dis., 6
Martin, 2000, Electrophysiological investigation of anthelmintic resistance, Parasitology, 120, S87, 10.1017/S0031182099005715
Martin, 2010, Control of nematode parasites with agents acting on neuro-musculature systems: lessons for neuropeptide ligand discovery, Adv. Exp. Med. Biol., 692, 138, 10.1007/978-1-4419-6902-6_7
Martin, 2012, Levamisole receptors: a second awakening, Trends Parasitol., 28, 289, 10.1016/j.pt.2012.04.003
Martin, 2005, Drug resistance and neurotransmitter receptors of nematodes: recent studies on the mode of action of levamisole, Parasitology, 131, S71
Muthaiyan Shanmugam, 2016, 21
O'Lone, 2001, Effect of refrigeration on the antinematodal efficacy of ivermectin, J. Parasitol., 87, 452, 10.1645/0022-3395(2001)087[0452:EOROTA]2.0.CO;2
Partridge, 2018, An automated high-throughput system for phenotypic screening of chemical libraries on C. elegans and parasitic nematodes, Int. J. Parasitol. Drugs Drug Resist., 8, 8, 10.1016/j.ijpddr.2017.11.004
Partridge, 2008, The C. elegans glycosyltransferase BUS-8 has two distinct and essential roles in epidermal morphogenesis, Dev. Biol., 317, 549, 10.1016/j.ydbio.2008.02.060
Pemberton, 2001, Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha2 in the function of the native receptor, Mol. Pharmacol., 59, 1037, 10.1124/mol.59.5.1037
Qian, 2008, Levamisole resistance resolved at the single-channel level in Caenorhabditis elegans, Faseb. J., 22, 3247, 10.1096/fj.08-110502
Raizen, 1994, Electrical activity and behavior in the pharynx of Caenorhabditis elegans, Neuron, 12, 483, 10.1016/0896-6273(94)90207-0
Ren, 2011, Whole-Teflon microfluidic chips, Proc. Natl. Acad. Sci. U. S. A., 108, 8162, 10.1073/pnas.1100356108
Richmond, 2006, Electrophysiological recordings from the neuromuscular junction of C. elegans, WormBook, 1
Risi, 2019, Caenorhabditis elegans infrared-based motility assay identified new hits for nematicide drug development, Vet. Sci., 6, 29, 10.3390/vetsci6010029
Ruiz-Lancheros, 2011, Activity of novel nicotinic anthelmintics in cut preparations of Caenorhabditis elegans, Int. J. Parasitol., 41, 455, 10.1016/j.ijpara.2010.11.009
San-Miguel, 2013, Microfluidics as a tool for C. elegans research, WormBook, 1, 10.1895/wormbook.1.162.1
Schwab, 2005, Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment, Am. J. Trop. Med. Hyg., 73, 234, 10.4269/ajtmh.2005.73.234
Shoop, 1995, Structure and activity of avermectins and milbemycins in animal health, Vet. Parasitol., 59, 139, 10.1016/0304-4017(94)00743-V
Sloan, 2015, Expression of nicotinic acetylcholine receptor subunits from parasitic nematodes in Caenorhabditis elegans, Mol. Biochem. Parasitol., 204, 44, 10.1016/j.molbiopara.2015.12.006
Smith, 1996, Effect of ivermectin on Caenorhabditis elegans larvae previously exposed to alcoholic immobilization, J. Parasitol., 82, 187, 10.2307/3284141
Spensley, 2018, Acute effects of drugs on Caenorhabditis elegans movement reveal complex responses and plasticity, G3 (Bethesda), 8, 2941, 10.1534/g3.118.200374
Stasiuk, 2019, Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs, Int. J. Parasitol. Drugs Drug Resist., 11, 13, 10.1016/j.ijpddr.2019.09.001
Stiernagle, 2006, Maintenance of C. elegans, WormBook, 1
Takahashi, 2017, Optical silencing of body wall muscles induces pumping inhibition in Caenorhabditis elegans, PLoS Genet., 13, 10.1371/journal.pgen.1007134
Towers, 2005, The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit, J. Neurochem., 93, 1, 10.1111/j.1471-4159.2004.02951.x
Verma, 2020, Recording drug responses from adult Dirofilaria immitis pharyngeal and somatic muscle cells, Int. J. Parasitol. Drugs Drug Resist., 15, 1, 10.1016/j.ijpddr.2020.12.002
Weaver, 2017, Using a health-rating system to evaluate the usefulness of Caenorhabditis elegans as a model for anthelmintic study, PloS One, 12, 10.1371/journal.pone.0179376
Weeks, 2018, Sertraline, paroxetine, and chlorpromazine are rapidly acting anthelmintic drugs capable of clinical repurposing, Sci. Rep., 8, 975, 10.1038/s41598-017-18457-w
Weeks, 2016, Microfluidic platform for electrophysiological recordings from host-stage hookworm and Ascaris suum larvae: a new tool for anthelmintic research, Int. J. Parasitol. Drugs Drug Resist., 6, 314, 10.1016/j.ijpddr.2016.08.001
Weeks, 2018, Anthelmintic drug actions in resistant and susceptible C. elegans revealed by electrophysiological recordings in a multichannel microfluidic device, Int. J. Parasitol. Drugs Drug Resist., 8, 607, 10.1016/j.ijpddr.2018.10.003
Wolstenholme, 2011, Ion channels and receptor as targets for the control of parasitic nematodes, Int. J. Parasitol. Drugs Drug Resist., 1, 2, 10.1016/j.ijpddr.2011.09.003
Wolstenholme, 2005, Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics, Parasitology, 131, S85
Zamanian, 2018, Discovery of genomic intervals that underlie nematode responses to benzimidazoles, PLoS Neglected Trop. Dis., 12, 10.1371/journal.pntd.0006368
Zhu, 2020, Functional analysis of epilepsy-associated variants in STXBP1/Munc18-1 using humanized Caenorhabditis elegans, Epilepsia, 61, 810, 10.1111/epi.16464
