Comparison of different symmetry indices for the quantification of dynamic joint angles

Hannah Lena Siebers1, Waleed Alrawashdeh1, Marcel Betsch2, Filippo Migliorini1, Frank Hildebrand1, Jörg Eschweiler1
1Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
2Department of Orthopaedics and Trauma Surgery, University Medical Center Mannheim of the University Heidelberg, Mannheim, Germany

Tóm tắt

Symmetry is a sign of physiological and healthy movements, as pathologies are often described by increased asymmetries. Nevertheless, based on precisely measured data, even healthy individuals will show small asymmetries in their movements. However, so far there do not exist commonly accepted methods and reference values for gait symmetry in a healthy collective. Therefore, a comparison and presentation of reference values calculated by 3 different methods of symmetry indices for lower limb joint angles during walking, ascending, and descending stairs were shown. Thirty-five healthy participants were analyzed during walking, ascending, and descending stairs with the help of the inertial measurement system MyoMotion. Using the normalized symmetry index (SInorm), the symmetry index (SI) as the integral of the symmetry function, and another normalized symmetry index (NSI), the symmetry of joint angles was evaluated. For statistical evaluation of differences, repeated measurement models and Bland–Altman-Plots were used. Apart from a bias between the symmetry indices, they were comparable in the predefined limits of 5%. For all parameters, significantly higher asymmetry was found for ankle dorsi/-plantarflexion, compared with the hip and knee flexion. Moreover, the interaction effect of the joint and movement factors was significant, with an increased asymmetry of the hip and knee during descending stairs greater than while ascending stairs or walking, but a reduced symmetry of the ankle during walking when compared to descending. The movement only showed significant effects when analyzing the SInorm. Even for healthy individuals, small asymmetries of movements were found and presented as reference values using 3 different symmetry indices for dynamic lower limb joint angles during 3 different movements. For the quantification of symmetrical movements differences between the joints, movements, and especially their interaction, are necessary to be taken into account. Moreover, a bias between the methods should be noted. The potential for each presented symmetry index to identify pathological movements or track a rehabilitation process was shown but has to be proven in further research. Trial registration: DRKS00025878.

Tài liệu tham khảo

Patterson KK, Gage WH, Brooks D, Black SE, McIlroy WE. Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture. 2010;31:2. https://doi.org/10.1016/j.gaitpost.2009.10.014. Devan H, Carman A, Hendrick P, Hale L, Ribeiro DC. Spinal, pelvic, and hip movement asymmetries in people with lower-limb amputation: systematic review. J Rehabil Res Dev. 2015;52:1. https://doi.org/10.1682/JRRD.2014.05.0135. Tsai T-Y, Dimitriou D, Li J-S, Woo Nam K, Li G, Kwon Y-M. Asymmetric hip kinematics during gait in patients with unilateral total hip arthroplasty: in vivo 3-dimensional motion analysis. J Biomech. 2015;48:4. https://doi.org/10.1016/j.jbiomech.2015.01.021. Mills K, Hettinga BA, Pohl MB, Ferber R. Between-limb kinematic asymmetry during gait in unilateral and bilateral mild to moderate knee osteoarthritis. Arch Phys Med Rehabil. 2013;94:11. https://doi.org/10.1016/j.apmr.2013.05.010. Xia Y, Ye Q, Gao Q, Lu Y, Zhang D. Symmetry analysis of gait between left and right limb using cross-fuzzy entropy. Comput Math Methods Med. 2016. https://doi.org/10.1155/2016/1737953. Winiarski S, Czamara A. Evaluation of gait kinematics and symmetry during the first two stages of physiotherapy after anterior cruciate ligament reconstruction. Acta Bioeng Biomech. 2012;14:2. Cimolin V, Cau N, Sartorio A, et al. Symmetry of gait in underweight, normal and overweight children and adolescents. Sensors (Basel). 2019;19:9. https://doi.org/10.3390/s19092054. Anwary AR, Yu H, Vassallo M. An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors (Basel). 2018;18:2. https://doi.org/10.3390/s18020676. Nigg S, Vienneau J, Maurer C, Nigg BM. Development of a symmetry index using discrete variables. Gait Posture. 2013;38:1. https://doi.org/10.1016/j.gaitpost.2012.10.024. Queen R, Dickerson L, Ranganathan S, Schmitt D. A novel method for measuring asymmetry in kinematic and kinetic variables: the normalized symmetry index. J Biomech. 2020;99:109531. https://doi.org/10.1016/j.jbiomech.2019.109531. Błażkiewicz M, Wit A. Comparison of sensitivity coefficients for joint angle trajectory between normal and pathological gait. Acta Bioeng Biomech. 2012;14:1. Gouwanda D. Further validation of normalized symmetry index and normalized cross-correlation in identifying gait asymmetry on restricted knee and ankle movement. In: IEEE-EMBS conference on biomedical engineering and sciences. 2012. https://doi.org/10.1109/IECBES.2012.6498167. Herzog W, Nigg BM, Read LJ, Olsson E. Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc. 1989;21:1. https://doi.org/10.1249/00005768-198902000-00020. Gouwanda D, Senanayake SMNA. Identifying gait asymmetry using gyroscopes–a cross-correlation and normalized symmetry index approach. J Biomech. 2011;44:5. https://doi.org/10.1016/j.jbiomech.2010.12.013. Gouwanda D, Senanayake SMNA. Periodical gait asymmetry assessment using real-time wireless gyroscopes gait monitoring system. J Med Eng Technol. 2011;35:8. https://doi.org/10.3109/03091902.2011.627080. Xu Y, Hou Q, Wang C, Simpson T, Bennett B, Russell S. how well can modern nonhabitual barefoot youth adapt to barefoot and minimalist barefoot technology shoe walking, in regard to gait symmetry. Biomed Res Int. 2017. https://doi.org/10.1155/2017/4316821. Zeni JA, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27:4. https://doi.org/10.1016/J.GAITPOST.2007.07.007. Lewis J, Freisinger G, Pan X, Siston R, Schmitt L, Chaudhari A. Changes in lower extremity peak angles, moments and muscle activations during stair climbing at different speeds. J Electromyogr Kinesiol. 2015;25:6. https://doi.org/10.1016/j.jelekin.2015.07.011. Siebers HL, Eschweiler J. Stride detection algorithm. 2021. https://doi.org/10.17632/p7rncyzpg2.1. Siebers HL, Siroros N, Alrawashdeh W, et al. Unrestricted stride detection during stair climbing using IMUs. Med Eng Phys. 2021. https://doi.org/10.1016/j.medengphy.2021.04.004. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:8476. Jafarnezhadgero A, Madadi-Shad M, Esker FS, Robertson DGE. Do different methods for measuring joint moment asymmetry give the same results? J Bodyw Mov Ther. 2018;22:3. https://doi.org/10.1016/j.jbmt.2017.10.015. Winiarski S, Rutkowska-Kucharska A, Pozowski A, Aleksandrowicz K. A new method of evaluating the symmetry of movement used to assess the gait of patients after unilateral total hip replacement. Appl Bionics Biomech. 2019. https://doi.org/10.1155/2019/7863674.