Comparison of certain summability methods by speeds of convergence
Tóm tắt
We deal with families of summability methods which depend on a continuous parameter and where two different methods are connected either by a Cesàro-type or Euler–Knopp-type method. Extending and applying some results of [14], we are able to compare speeds of convergence in families of generalized Nörlund methods and to give certain Tauberian remainder theorems. Particular cases are the families of Cesàro, generalized Cesàro and Euler–Knopp methods.
Tài liệu tham khảo
N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, University Press (Cambridge, 1987).
G. H. Ganelius, Tauberian remainder theorems, Lecture Notes in Mathematics 232, Springer (Berlin, 1971).
G. H. Hardy, Divergent series, University Press (Oxford, 1949).
G. Kangro, On Bohr-Hardy-type multipliers of convergence for a given speed. I, Proc. Estonian Acad. Sci. Phys. Math., 18(1969), 137-145 (in Russian).
G. Kangro, Summability factors for the series λ-bounded by the methods of Riesz and Cesàro, Tartu Ülik. Toimetised, 277(1971), 136-154 (in Russian).
R. Kiesel, General Nörlund transforms and power series methods, Math. Z., 214(1993), 273-286.
R. Kiesel, On scales of summability methods, Math. Nachr., 176(1995), 129-138.
R. Kiesel, The law of the iterated logarithm for certain power series and generalized Nörlund methods, Math. Proc. Camb. Phil.Soc., 120(1996), 735-753.
R. Kiesel and U. StadtmÜller, Tauberian and convexity theorems for certain (N,p,q)-means, Canad. J. Math., 46(1994), 982-994.
S. Lyttkens, General Tauberian remainder theorems, Math. Scand., 35(1974), 61-104.
M. MÜristaja AND A. Tali, Some notes on a convexity theorem for Cesàro-type families of summability methods, Acta Comment. Univ. Tartu. Math., 1(1996), 93-103.
V. V. Petrov, Limit theorems of probability theory, Clarendon Press (Oxford, 1995).
R. Sinha, Convexity theorem for (N,p,q) summability, Kyungpook Math. J., 13(1973), 37-40.
U. StadtmÜller and A. Tali, On some families of certain Nörlund methods and power series methods, J. Math. Anal. Appl., 238(1999), 44-66.
I. Tammeraid, Two Tauberian remainder theorems for Cesàro method of summability, Proc. Estonian Acad. Sci. Phys. Math., 49(2000), 225-232.
A. Tali, Convexity conditions for families of summability methods, Tartu Ülik. Toimetised, 960(1993), 117-138.