Comparison of cat and human calcium oxalate monohydrate kidney stone matrix proteomes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Coe FL, Parks JH, Asplin JR (1992) The pathogenesis and treatment of kidney stones. N Engl J Med 327:1141–1152
Worcester EM (1996) Inhibitors of stone formation. [Review] [74 refs]. Sem Nephrol 16:474–486
Khan SR (1997) Animal models of kidney stone formation: an analysis. [Review] [52 refs]. World J Urol 15:236–243
Khan SR (2013) Animal models of calcium oxalate kidney stone formation. Anim Models Study Hum Dis. https://doi.org/10.1016/B978-0-12-415894-8.00021-X
Ross SJ, Osborne CA, Lekcharoensuk C et al (2007) A case-control study of the effects of nephrolithiasis in cats with chronic kidney disease. J Am Vet Med Assoc 230:1854–1859. https://doi.org/10.2460/javma.230.12.1854
Cléroux A, Alexander K, Beauchamp G, Dunn M (2017) Evaluation for association between urolithiasis and chronic kidney disease in cats. J Am Vet Med Assoc 250:770–774. https://doi.org/10.2460/javma.250.7.770
Alford A, Furrow E, Borofsky M, Lulich J (2020) Animal models of naturally occurring stone disease. Nat Rev Urol 17:691–705. https://doi.org/10.1038/s41585-020-00387-4
Lulich J (2016) Microanatomy of feline nephrolithiasis. American College of Veterinary Internal Medicine Forum, Denver, p 2016
Wesson JA, Kolbach-Mandel AM, Hoffmann BR et al (2019) Selective protein enrichment in calcium oxalate stone matrix: a window to pathogenesis? Urolithiasis 47:521–532. https://doi.org/10.1007/s00240-019-01131-3
Witzmann FA, Evan AP, Coe FL et al (2016) Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteome Sci 14:4. https://doi.org/10.1186/s12953-016-0093-x
Canales BK, Anderson L, Higgins L et al (2010) Proteome of human calcium kidney stones. Urology 76:1017.e13-1017.e20. https://doi.org/10.1016/j.urology.2010.05.005
Merchant ML, Cummins TD, Wilkey DW et al (2008) Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol - Ren Physiol 295:F1254–F1258
Aggarwal KP, Tandon S, Naik PK et al (2013) Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis. PLoS ONE Electron Resour 8:e69916. https://doi.org/10.1371/journal.pone.0069916
Kaneko K, Kobayashi R, Yasuda M et al (2012) Comparison of matrix proteins in different types of urinary stone by proteomic analysis using liquid chromatography-tandem mass spectrometry. Int J Urol 19:765–772. https://doi.org/10.1111/j.1442-2042.2012.03005.x
Boyce WH, Garvey FK (1956) The amount and nature of the organic matrix in urinary calculi: a review. J Urol 76:213–227
Worcester EM, Beshensky AM, Hung L (1993) Nephrocalcin (NC) levels and calcium oxalate (CaOx) crystal growth inhibition in the urine of hypercalciuric and normocalciuric calcium stone formers (SF). JAmerSocNeph 4:716–716
Nakagawa Y (1997) Properties and function of nephrocalcin: mechanism of kidney stone inhibition or promotion. Keio J Med 46:1–9. https://doi.org/10.2302/kjm.46.1
Ryall RL, Grover PK, Stapleton AM et al (1995) The urinary F1 activation peptide of human prothrombin is a potent inhibitor of calcium oxalate crystallization in undiluted human urine in vitro. Clin Sci 89:533–541
Hess B (1994) Tamm-Horsfall glycoprotein and calcium nephrolithiasis. Miner Electrolyte Metab 20:393–398
Viswanathan P, Rimer JD, Kolbach AM et al (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. Urol Res 39:269–282. https://doi.org/10.1007/s00240-010-0353-7
Wesson JA, Ganne V, Beshensky AM, Kleinman JG (2005) Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers. Urol Res 33:206–212
Rimer JD, Kolbach-Mandel AM, Ward MD, Wesson JA (2017) The role of macromolecules in the formation of kidney stones. Urolithiasis 45:57–74. https://doi.org/10.1007/s00240-016-0948-8
Berger GK, Eisenhauer J, Vallejos A et al (2021) Exploring mechanisms of protein influence on calcium oxalate kidney stone formation. Urolithiasis. https://doi.org/10.1007/s00240-021-01247-5
Kolbach-Mandel AM, Mandel NS, Hoffmann BR et al (2017) Stone former urine proteome demonstrates a cationic shift in protein distribution compared to normal. Urolithiasis 45:337–346. https://doi.org/10.1007/s00240-017-0969-y
Canales BK, Anderson L, Higgins L et al (2008) Second prize: Comprehensive proteomic analysis of human calcium oxalate monohydrate kidney stone matrix. J Endourol 22:1161–1167. https://doi.org/10.1089/end.2007.0440
Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136
(2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. Doi:https://doi.org/10.1093/nar/gkaa1100
Schwanhäusser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342. https://doi.org/10.1038/nature10098
Holman JD, Tabb DL, Mallick P (2014) Employing proteowizard to convert raw mass spectrometry data. Curr Protoc Bioinforma. https://doi.org/10.1002/0471250953.bi1324s46
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567. https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18%3c3551::AID-ELPS3551%3e3.0.CO;2-2
Searle BC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10:1265–1269. https://doi.org/10.1002/pmic.200900437
Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658. https://doi.org/10.1021/ac0341261
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421
Bjellqvist B, Hughes GJ, Pasquali C et al (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031. https://doi.org/10.1002/elps.11501401163
Tian Y, Tirrell M, Davis C, Wesson JA (2021) Protein primary structure correlates with calcium oxalate stone matrix preference. PLoS ONE 16:e0257515. https://doi.org/10.1371/journal.pone.0257515
Shiraga H, Min W, VanDusen WJ et al (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci U A 89:426–430
Sheng X, Jung T, Wesson JA, Ward MD (2005) Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci U S A 102:267–272