Comparison of Traditional and Modern Techniques for Betalains Extraction from Amaranth Agro-Industrial Waste: The Recovery of High Value By-Products
Tóm tắt
The increasing demand for healthier food has boosted the amaranth cultivation for the production of edible grains. However, after the grain is harvested, the leaves are considered agro-industrial waste and are left on the soil, but those leaves have a high potential for the recovery of high value by-products such as betalains. Betalains are natural dyes with important uses in food and pharmaceutical industries, which are extracted from plants by Maceration (MAC) or by using new techniques such as microwave-assisted (MWE) and sonication-assisted (SAE) extraction. The aim of this study was to compare the extraction efficiencies of these three methods to recover bioactives from amaranth leaves waste. Betalains (betacyanins and betaxanthins), phenolics, flavonoids, and antioxidant activity were quantified by colorimetric methods. The metabolite profile of the extracts was analysed by UPLC–MS/MS. Results showed that highest betalains content (225 ± 20 mg/100 g) were obtained with SAE method, but higher phenolic compounds and antioxidant activity were obtained with MAC when using 20% aqueous-methanol as solvent. Extracts analysis showed the presence of 13 betalains and 21 phenolic compounds, including asebotin and shikalkin. Results have shown that amaranth leaves agro-industrial waste are a rich source of bioactive compounds. This work will contribute to the waste recovery effort and the implementation circular bioeconomy in the amaranth grain cultivation.
Từ khóa
Tài liệu tham khảo
Downham, A., Collins, P.: Colouring our foods in the last and next millennium. Int. J. Food Sci. Technol. 35, 5–22 (2000). https://doi.org/10.1046/j.1365-2621.2000.00373.x
Oplatowska-Stachowiak, M., Elliott, C.T.: Food colors: existing and emerging food safety concerns. Crit. Rev. Food Sci. Nutr. 57, 524–548 (2017). https://doi.org/10.1080/10408398.2014.889652
Simon, J.E., Decker, E.A., Ferruzzi, M.G., Giusti, M.M., Mejia, C.D., Goldschmidt, M., Talcott, S.T.: Establishing standards on colors from natural sources. J. Food Sci. 82, 2539–2553 (2017). https://doi.org/10.1111/1750-3841.13927
Moreno, D.A., Garcia-Viguera, C.: Betalains in the era of global agri-food science, technology and nutritional health. Phytochem. Rev. 7, 261–280 (2008). https://doi.org/10.1007/s11101-007-90884-y
Kumorkiewicz-Jamro, A., Šwiergosz, T., Sutor, K., Spórna-Kucab, A., Wybraniec, S.: Multi-colored shades of betalains: recent advances in betacyanin chemistry. Nat. Prod. Rep. 38, 2315 (2021). https://doi.org/10.1039/d1np00018g
Delgado-Vargas, F., Jiménez, A.R., Paredes-López, O., Francis, F.J.: Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 40, 173–289 (2000). https://doi.org/10.1080/10408690091189257
Sadowska-Bartosz, I., Bartosz, G.: Biological properties and applications of betalains. Molecules. 26, 2520 (2021). https://doi.org/10.3390/molecules26092520
Clifford, T., Howatson, G., West, D.J., Stevenson, E.J.: The potential benefits of red beetroot supplementation in health and disease. Nutrients. 7, 2801–2822 (2015). https://doi.org/10.3390/nu7042801
Stintzing, F.C., Carle, R.: Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 15, 19–38 (2004). https://doi.org/10.1016/j.tifs.2003.07.004
Hussain, E.A., Sadiq, Z., Zia-Ul-Haq, M.: Sources of betalains. In: Sadiq, Zubi, Zia-UlHaq, Muhammad (eds.) Betalains: biomolecular aspects. Springer International Publishing, Berlin (2018). https://doi.org/10.1007/978-3-319-95624-4
Martins, N., Lobo-Roriz, C., Morales, P., Barros, L., Ferreira, I.C.F.R.: Coloring attributes of betalains: a key emphasis on stability and future applications. Food Funct. 8, 1357–13872 (2017). https://doi.org/10.1039/C7FO00144D
Howard, J.E., Villamil, M.B., Riggins, C.W.: Amaranth as a natural food colorant source: survey of germplasm and optimization of extraction methods for betalain pigments. Front. Plant. Sci. 13, 932440 (2022). https://doi.org/10.3389/fpls.2022.932440
Carreón-Hidalgo, J.P., Franco-Vásquez, D.C., Gómez-Linton, D.R., Pérez-Flores, L.J.: Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res. Int. 151, 1–21 (2022). https://doi.org/10.1016/j.foodres.2021.110821
Celli, G.B., Brooks, M.S.L.: Impact of extraction and processing conditions on betalains and comparison of properties with anthocyanins - a current review. Food Res. Int. 100, 501–509 (2017). https://doi.org/10.1016/j.foodres.2016.08.034
Huerta-Ocampo, J.A., Barrera-Pacheco, A., Mendoza-Hernandez, C.S., Espitia-Rangel, E., Hans-Peter, M., Barba de la Rosa, A.P.: Salt stress-induced alterations in the root proteome of Amaranthus cruentus L. J. Proteome Res. 13, 3607–3627 (2014). https://doi.org/10.1021/pr500153m
Coelho, L.M., Silva, P.M., Martins, J.T., Pinheiro, A.C., Vicente, A.A.: Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct. 9, 5499–5512 (2018). https://doi.org/10.1039/C8FO01422A
Espitia-Rangel, E., Mapes-Sánchez, C., De Escobedo-López, O.-O., Rivas-Valencia, M., Martínez-Trejo, P., Cortés-Espinoza, G., Hernández-Casillas, L.: Conservación Y Uso De Los Recursos genéticos de amaranto en México. INIFAP Centro de Investigación Regional Centro, Celaya (2010)
Calva-Estrada, S.J., Jiménez-Fernández, M., Lugo-Cervantes, E.: Betalains and their applications in food: the current state of processing, stability and future opportunities in the industry. Food Chem. Mol. Sci. 4, 100089 (2022). https://doi.org/10.1016/j.fochms.2022.100089
Li, H., Deng, Z., Liu, R., Zhu, H., Draves, J., Marcone, M., Sun, Y., Tsao, R.: Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compost Anal. 37, 75–81 (2015). https://doi.org/10.1016/j.jfca.2014.09.003
Das, M., Saeid, A., Hossain, M.F., Jiang, G.H., Eun, J.B., Ahmed, M.: Influence of extraction parameters and stability of betacyanins extracted from red amaranth during storage. J. Food Sci. Technol. 56, 643–653 (2019). https://doi.org/10.1007/s13197-018-3519-x
Ramili, N.S., Ismail, P., Rahmat, A.: Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). Sci. World J. (2014). https://doi.org/10.1155/2014./964731
Prakash-Maran, J., Manikandan, S., Mekala, V.: Modeling and optimization of betalain extraction from Opuntia ficus-indica using box Behnken design with desirability function. Ind. Crops Prod. 49, 304–311 (2013). https://doi.org/10.1016/j.indcrop.2013.05.012
Melgar, B., Dias, M.I., Barros, L., Ferreira, I.C.F.R., Rodriguez-Lopez, A.D., Carcia-Castello, E.: Ultrasound and microwave assisted extraction of Opuntia fruit peels biocompounds: Optimization and comparison using RSM-CCD. Molecules. 24, 1–16 (2019). https://doi.org/10.3390/molecules24193618
Bassey, E.J., Cheng, J.H., Sun, D.W.: Improving drying kinetics, physicochemical properties and bioactive compounds of red dragon fruit (Hylocereus species) by novel infrared drying. Food Chem. 375, 131886 (2022). https://doi.org/10.1016/j.foodchem.2021.131886
Silva, J.P.P., Bolanho, B.C., Stevanato, N., Massa, T.B., da Silva, C.: Ultrasound-assisted extraction of red beet pigments (Beta vulgaris L.): influence of operational parameters and kinetic modeling. J. Food Process. Preserv 44, e14762 (2020). https://doi.org/10.1111/jfpp.147562
Nirmal, N.P., Mereddy, R., Maqsood, S.: Recent developments in emerging technologies for beetroot pigment extraction and its food applications. Food Chem. 356, 129611 (2021). https://doi.org/10.1016/j.foodchem.2021.129611
Lobo Roriz, C., Xavier, V., Heleno, S.A., Pinela, J., Dias, M.I., Calhelha, R.C., Morales, P., Ferreira, I.C.F.R., Barros, L.: Chemical and bioactive features of Amaranthus caudatus L flowers and optimized ultrasound-assisted extraction of betalains. Foods. 10, 1–13 (2021). https://doi.org/10.3390/foods1004077
Tabio-García, D., Paraguay-Delgado, F., Sánchez-Madrigal, M., Quintero-Ramos, A., Espinoza-Hicks, J.C., Meléndez-Pizarro, C.O., Ruiz-Gutiérrez, M.G., Espitia-Rangel, E.: Optimisation of the ultrasound-assisted extraction of betalains and polyphenols from Amaranthus hypochondriacus var. Nutrisol Ultrason. Sonochem. 77, 105680 (2021). https://doi.org/10.1016/J.ULTSONCH.2021.105680
Cardoso-Ugarte, G.A., Sosa-Morales, M.E., Ballard, T., Liceaga, A., San Martín-González, M.F.: Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT-Food Sci. Tehcnol. 59, 276–282 (2014). https://doi.org/10.1016/j.lwt.2014.05.025
Basavaraja, T., Joshi, A., Sethi, S., Arora, B., Tomar, B.S., Varghese, E., Yadav, A.: Extraction procedure of betalains pigments from hardy beetroot matrix and its stabilization. J. Food Process. Preserv. 46, 16844 (2022). https://doi.org/10.1111/jfpp.16844
Garcia, E.J., Oldoni, T.L.C., Alencar, S.M., de Reis, A., Loguercio, A., Grande, R.H.M.: Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz Dent. J. 23, 22–27 (2012). https://doi.org/10.1590/s0103-64402012000100004
Galili, S., Hovav, R.: Determination of polyphenols, flavonoids, and antioxidant capacity in dry seeds. In: Ross-Watson, R. (ed.) Polyphenols in plants: isolation, purification and extract preparation. Academic Press, Cambridge (2014). https://doi.org/10.1016/B978-0-12-397934-6.00016-4
Mabasa, X.E., Mathomu, L.M., Madala, N.E., Musie, E.M., Sigidi, M.T.: Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and In Vitro bioactivities of the Momordica balsamina leaf extract. Biochem. Res. Int. (2021). https://doi.org/10.1155/2021/2854217
Cai, Y.Z., Sun, M., Corke, H.: HPLC characterization of betalains from plants in the Amaranthaceae. J. Chromatogr. Sci. 43, 454–460 (2005). https://doi.org/10.1093/chromsci/43.9.454
Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M.C., Condezo-Hoyos, L.: Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd) from Peruvian Altiplano. Food Chem. 183, 83–90 (2015). https://doi.org/10.1016/j.foodchem.2015.03.029
Laqui-Vilca, C., Aguilar-Tuesta, S., Mamani-Navarro, W., Montaño-Bustamante, J., Condezo-Hoyos, L.: Ultrasound-assisted optimal extraction and thermal stability of betalains from colored quinoa (Chenopodium quinoa Willd) hulls. Ind. Crops Prod. 111, 606–614 (2018). https://doi.org/10.1016/j.indcrop.2017.11.034
Biswas, M., Dey, S., Sen, R.: Betalains from Amaranthus tricolor L. J. Pharmacogn Phytochem 1, 87–95 (2013)
Różyło, R.: Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends Food Sci. Technol. 102, 39–50 (2020). https://doi.org/10.1016/j.tifs.2020.06.005
Bustos, M.C., Rocha-Parra, D., Sampedro, I., De Pascual-Teresa, S., León, A.E.: The influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. J. Agric. Food Chem. 66, 2714–2723 (2018). https://doi.org/10.1021/acs.jafc.7b05395
Tepić Horecki, A., Vakula, A., Pavlić, B., Jokanović, M., Malbaša, R., Vitas, J., Jaćimović, V., Šumić, Z.: Comparative drying of cornelian cherries: kinetics modeling and physico-chemical properties. J. Food Process. Preserv. 42, 1–13 (2018). https://doi.org/10.1111/jfpp.13562
Grajeda-Iglesias, C., Figueroa-Espinoza, M.C., Barouh, N., Baréa, B., Fernandes, A., De Freitas, V., Salas, E.: Isolation and characterization of anthocyanins from Hibiscus sabdariffa flowers. J. Nat. Prod. 79, 1709–1718 (2016). https://doi.org/10.1021/acs.jnatprod.5b00958
Cai, Y.Z., Xing, J., Sun, M., Corke, H.: Rapid identification of betacyanins from Amaranthus tricolor, Gomphrena globosa, and Hylocereus polyrhizus by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS). J. Agric. Food Chem. 54, 6520–6526 (2006). https://doi.org/10.1021/jf0609983
Arunachalam, V., Salgaonkar, D.C., Kevat, N.V., Walawalkar, B.V., Das, B.: Quantification of betacyanin content variation of amaranth varieties by an android app, colorimeter, and infrared spectroscopy. Chin. J Anal Chem. 50, 100145 (2022). https://doi.org/10.1016/j.cjac.2022.100145
Graça-Miguel, M.: Betalains in some species of the Amaranthaceae family: a review. Antioxidants 7, 1–33 (2018). https://doi.org/10.3390/antiox7040053
Gautério, G.V., da Silva, R.M., Karraz, F.C., Coelho, M.A.Z., Ribeiro, B.D., Lemes, A.C.: Cell disruption and permeabilization methods for obtaining yeast bioproducts. Clean. Chem Eng. 6, 100112 (2023). https://doi.org/10.1016/j.clce.2023.100112
Howard, C., Ferrier, A.: Methanol. In: Encyclopedia of toxicology. Academic Press, Cambridge (2024). https://doi.org/10.1016/B978-0-12-824315-2.00676-X
Cai, Y.-Z., Sun, M., Schliemann, W., Corke, H.: Chemical stability and colorant properties of betaxanthin pigments from Celosia argentea. J. Agric. Food Chem. 49, 4429–4435 (2001). https://doi.org/10.1021/jf0104735
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., Lightfoot, D.A.: Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6, 1–23 (2017). https://doi.org/10.3390/plants6040042
Priatni, S., Pradita, A.: Stability study of betacyanin extract from red dragon fruit (Hylocereus Polyrhizus) peels. Procedia Chem. 16, 438–444 (2015). https://doi.org/10.1016/j.proche.2015.12.076
Castellar, R., Obón, J.M., Alacid, M., Fernández-López, J.A.: Color properties and stability of betacyanins from Opuntia fruits. J. Agric. Food Chem. 51, 2772–2776 (2003). https://doi.org/10.1021/jf021045h
Rodríguez-Mena, A., Ochoa-Martínez, A., González-Herrera, M., Rutiaga-Quiñones, S., González-Laredo, O.M.F., Olmedilla-Alonso, R.: Natural pigments of plant origin: classification, extraction and application in foods. Food Chem. 398, 133908 (2023). https://doi.org/10.1016/j.foodchem.2022.133908
Lopes, G.R., Passos, C.P., Rodrigues, C., Teixeira, J.A., Coimbra, M.A.: Impact of microwave-assisted extraction on roasted coffee carbohydrates, caffeine, chlorogenic acids and coloured compounds. Food Res. Int. 129, 108864 (2020). https://doi.org/10.1016/j.foodres.2019.108864
Shang, A., Luo, M., Gan, R.Y., Xu, X.Y., Xia, Y., Guo, H., Liu, Y., Li, H.B.: Effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus Polystachyus Rehd). Antioxidants 9, 1–17 (2020). https://doi.org/10.3390/antiox9080678
Tiwari, B.K.: Ultrasound: A clean, green extraction technology. TRAC. 71, 100–109 (2015). https://doi.org/10.1016/j.trac.2015.04.013
Das, P., Nayak, K., Krishnan Kesavan, R.: Ultrasound assisted extraction of food colorants: principle, mechanism, extraction technique and applications: a review on recent progress. Food Chem. Adv. 1, 100144 (2022). https://doi.org/10.1016/j.focha.2022.100144
Fu, Y., Shi, J., Xie, S.Y., Zhang, T.Y., Soladoye, O.P., Aluko, R.E.: Red beetroot betalains: perspectives on extraction, processing, and potential health benefits. J. Agric. Food Chem. 68, 11595–11611 (2020). https://doi.org/10.1021/acs.jafc.0c04241
de la Barba, A.P., de León-Rodríguez, A., Laursen, B., Fomsgaard, I.S.: Influence of the growing conditions on the flavonoids and phenolic acids accumulation in amaranth (Amaranthus hypochondriacus L) leaves. Terra Latinoam. 37, 449–457 (2019). https://doi.org/10.28940/terra.v37i4.541
Sellappan, S., Akoh, C.C.: Flavonoids and antioxidant capacity of georgia-grown vidalia onions. J. Agric. Food Chem. 50, 5338–5342 (2002). https://doi.org/10.1021/jf020333a
Panche, A.N., Diwan, A.D., Chandra, S.R.: Flavonoids: an overview. J. Nutr. Sci. 5, 1–15 (2016). https://doi.org/10.1017/jns.2016.41
Hernández-Aguirre, O.A., Muro, C., Hernández-Acosta, E., Alvarado, Y., Díaz-Nava, M.C.: Extraction and stabilization of betalains from beetroot (Beta vulgaris) wastes using deep eutectic solvents. Molecules. 26, 6342 (2021). https://doi.org/10.2290/molecules26216342
Castellanos-Santiago, E., Yahia, E.M.: Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J. Agric. Food Chem. 56, 5758–5764 (2008). https://doi.org/
Cai, Y.-Z., Sun, M., Corke, H.: Characterization and application of betalain pigments from plants of the Amaranthaceae. Food Sci. Technol. 16, 370–376 (2005). https://doi.org/10.1016/j.tifs.2005.03.020
Packard, E.E., da Costa Ribeiro Quintans, I.L., Adhikary, D.: Genetics of betalain pigments in amaranth species. In: Adhikary, D., Deyholos, M.K., Delano-Frier, J.P. (eds.) The Amaranth genome, compendium of plant genomes. Springer, Switzerland (2021). https://doi.org/10.1007/978-3-030-72365-1_4
Ozsoy, N., Yilmaz, T., Kurt, O., Can, A., Yanardag, R.: In vitro antioxidant activity of Amaranthus lividus L. Food Chem. 116, 867–872 (2009). https://doi.org/10.1016/J.FOODCHEM.2009.03.036
Spórna-Kucab, A., Jagodzińska, J., Wybraniec, S.: Separation of betacyanins from purple flowers of Gomphrena globosa L. by ion-pair high-speed counter-current chromatography. J. Chromatogr. A 1489, 51–57 (2017). https://doi.org/10.1016/J.CHROMA.2017.01.064
Kugler, F., Stintzing, F.C., Carle, R.: Characterisation of betalain patterns of differently coloured inflorescences from Gomphrena globosa L. and Bougainvillea sp. by HPLC-DAD-ESI-MS. Anal. Bioanal Chem. 387, 637–648 (2007). https://doi.org/10.1007/s00216-006-0897-0
Jeong, W.T., Bang, J.H., Hans, Hyu, T.K., Cho, H., Lim, H.B., Chung, J.W.: Establishment of a UPLC-PDA/ESI-Qtof/MS-based approach for the simultaneous analysis of multiple phenolic compounds in amaranth (A. Cruentus and A. tricolor). Molecules. 25, 1–12 (2020). https://doi.org/10.3390/molecules25235674
Thanikachalam, V., Jayaraj, I.A.: Phytochemistry of Amaranthus viridis: GC-MS analysis. Int. J. Curr. Res. Rev. 13, 162–166 (2021). https://doi.org/10.31782/IJCRR.2021.13713
Yadav, S., Sharma, A., Nayik, G.A., Cooper, R., Bhardwaj, G., Sohal, H.S., Mutreja, V., Kaur, R., Areche, F.O., Aloudat, M., Shaikh, A.M., Kovács, B., Mohamed-Ahmed, A.E.: Review of shikonin and derivatives: Isolation, chemistry, biosynthesis, pharmacology and toxicology. Front. Pharmacol. 13, 905755 (2022). https://doi.org/10.3389/FPHAR.2022.905755/BIBTEX
Ibrahim, A.K., Youssef, A.I., Arafa, A.S., Foad, R., Radwan, M.M., Ross, S., Hassanean, H.A., Ahmed, S.A.: Anti-H5N1 virus new diglyceride ester from the red sea grass Thallasodendron Ciliatum. Nat. Prod. Res. 27, 1625–1632 (2013). https://doi.org/10.1080/14786419.2012.742082