Comparison of Sporormiella dung fungal spores and oribatid mites as indicators of large herbivore presence: evidence from the Cuzco region of Peru
Tài liệu tham khảo
Ahmed, 1972, Revisions of the genera Sporormia and Sporormiella, Can. J. Bot., 50, 419, 10.1139/b72-061
Arenal, 2004, Variability of spore length in some species of the genus Preussia (Sporormiella), Mycotaxon, 89, 137
Athias-Binche, 1986, Analyse démographique d'une population d'Hydrozetes lemnae Coggi, Acarien oribate inféodé à la lentille d'eau Lemna gibba L. en Argentine. 2. Les relations predateur/proie, Zool. Jahrb. - Abt. Syst. Okol. Geogr. Tiere, 113, 229
Baker, 2013, Do dung fungal spores make a good proxy for past distribution of large herbivores?, Quat. Sci. Rev., 62, 21, 10.1016/j.quascirev.2012.11.018
Baker, 2016, Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores, M. Ecol. Evol., 7, 1273, 10.1111/2041-210X.12580
Baker, 1985, Feeding, moulting, and the internal anatomy of Hydrozetes sp. (Oribatida: Hydrozetidae), Zool. Jahrb. Abt. Anat., 113, 77
Balogh, 1992
Bauer, 2004
Behan-Pelletier, 2003, Zetomimidae (Acari: Oribatida) of North America, 21
Behan-Pelletier, 2003, Redefinition of Pelopsis (Acari: Oribatida: Mycobatidae), with description of Pelopsis baloghi sp. nov. from Costa Rica, Acta Zool. Acad. Sci. Hung., 49, 5
Behan-Pelletier, 2007, Aquatic Oribatida: adaptations, constraints, distribution and ecology, 71
Bennett
Birks, 1985
Blackford, 2006, Linking current environments and processes to fungal spore assemblages: surface NPM data from woodland environments, Rev. Palaeobot. Palynol., 141, 179, 10.1016/j.revpalbo.2006.03.010
Burney, 2003, Sporormiella and the late Holocene extinctions in Madagascar, Proc. Natl. Acad. Sci. Unit. States Am., 100, 10800, 10.1073/pnas.1534700100
Chepstow-Lusty, 1998, Tracing 4000 years of environmental history in the Cuzco area, Peru, from the pollen record, Mt. Res. Dev., 18, 159, 10.2307/3673971
Chepstow-Lusty, 1996, 4000 years of human impact and vegetation change in the central Peruvian Andes – with events parallelling the Maya record?, Antiquity, 70, 824, 10.1017/S0003598X0008409X
Chepstow-Lusty, 2003, A late Holocene record of arid events from the Cuzco region, Peru, J. Quat. Sci., 18, 491, 10.1002/jqs.770
Chepstow-Lusty, 2007, Evaluating socio-economic change in the Andes using oribatid mite abundances as indicators of domestic animal densities, J. Archaeol. Sci., 34, 1178, 10.1016/j.jas.2006.12.023
Chepstow-Lusty, 2009, Putting the rise of the Inca empire within a climatic and land management context, Clim. Past, 5, 1, 10.5194/cp-5-375-2009
Cook, 1981, 1520
Covarrubias, 1998, Oribatidos de Chile (Acarina: Oribatida) II. Especies asociadas a plantas acuaticas. [Chilean oribatids (Acarina: Oribatida) II. Species associated with aquatic plants], Acta Entomol. Chil., 22, 37
D'Anjou, 2012, Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry, Proc. Natl. Acad. Sci. Unit. States Am., 109, 20332, 10.1073/pnas.1212730109
Davis, 2006, Sporormiella fungal spores, a palynological means of detecting herbivore density, Palaeogeogr. Palaeoclimatol. Palaeoecol., 237, 40, 10.1016/j.palaeo.2005.11.028
Dodson, 2018, What does the occurrence of Sporormiella (Preussia) spores mean in Australian fossil sequences?, J. Quat. Sci., 33, 380, 10.1002/jqs.3020
De Acosta, 1986, [1590]. Historia natural y moral de las Indias
Erickson, 2013, Oribatid mites, 679
Erickson, 2007, Recognition of postglacial cold intervals by quantitative biozonation of fossil oribatid mites, 9
Ermilov, 2015, Peruvian oribatid mites (Acari, Oribatida) from the German Biological Expedition, with description of a new species of the genus Pergalumna, ZooKeys, 487, 87, 10.3897/zookeys.487.9335
Etienne, 2013, Influence of sample location and livestock numbers on Sporormiella concentrations and accumulation rates in surface sediments of Lake Allos, French Alps, J. Paleolimnol., 49, 117, 10.1007/s10933-012-9646-x
Fernandez, 1986, Analyse démographique d'une population d'Hydrozetes lemnae Coggi, Acarien oribate inféodé à la lentille d'eau Lemna gibba L. en Argentine. 1. Methodes et techniques, démographie d'H. lemnae comparaisons avec d'autres oribates, Zool. Jahrb. - Abt. Syst. Okol. Geogr. Tiere, 113, 213
Ficetola, 2018, DNA from lake sediments reveals long-term ecosystem changes after a biological invasion, Sci. Adv., 4, 10.1126/sciadv.aar4292
Fredes, 2016, Revision of Physobates (Acari, Oribatida, Tegoribatidae) and redescription of Physobates spinipes Hammer, 1962 with comments on tegoribatid genera, Zootaxa, 4098, 191, 10.11646/zootaxa.4098.1.10
Frey, 1964, Remains of animals in Quaternary lake and bog sediments and their interpretation, Adv. Limnol., 2, 1
Garcilaso de la Vega, 1966
Gea, 2017, Characterization of ancient lipids in prehistoric organic residues: chemical evidence of livestock-pens in rock-shelters since early neolithic to bronze age, J. Separ. Sci., 40, 4549, 10.1002/jssc.201700692
Gill, 2013, Linking abundances of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in palaeorecords, J. Ecol., 101, 1125, 10.1111/1365-2745.12130
Gill, 2009, Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America, Science, 326, 1100, 10.1126/science.1179504
Glave, 1983, vol. 3
Guillemot, 2017, Environmental responses of past and recent agropastoral activities on south Greenlandic ecosystems through molecular biomarkers, Holocene, 27, 783, 10.1177/0959683616675811
Hammer, 1961, Investigations on the oribatid fauna of the Andes mountains. II. Peru, Biol. Skr. Dan. Vid. Selsk., 13, 1
Hernández Trejo, 2011, Airborne ascospores in Mérida (SW Spain) and the effect of rain and other meteorological parameters on their concentration, Aerobiologia, 28, 13, 10.1007/s10453-011-9207-1
Hodgson, 2005, A 7000-year record of oribatid mite communities on a maritime-Antarctic island: responses to climate change, Arctic Antarct. Alpine Res., 37, 239, 10.1657/1523-0430(2005)037[0239:AYROOM]2.0.CO;2
Jackson, 1999, Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions, Bot. Rev., 65, 39, 10.1007/BF02856557
Johnson, 2015, Using dung fungi to interpret decline and extinction of megaherbivores: problems and solutions, Quat. Sci. Rev., 110, 107, 10.1016/j.quascirev.2014.12.011
Krause, 1981, Characeen als Bioindikatoren für den Gewässerzustand, Limnologica, 13, 399
Kufel, 2001, Chara beds acting as nutrient sinks in shallow lakes – a review, Aquat. Bot., 72, 249, 10.1016/S0304-3770(01)00204-2
Mazier, 2009, Multidisciplinary approach to reconstructing local pastoral activities: an example from the Pyrenean Mountains (Pays Basque), Holocene, 19, 171, 10.1177/0959683608098956
McCormac, 2004, SHCal04 southern hemisphere calibration 0–11.0 cal kyr BP, Radiocarbon, 46, 1087, 10.1017/S0033822200033014
Newell, 1945, Hydrozetes Berlese (Acari, Oribatoidea): the occurrence of the genus in North America, and the phenomenon of levitation, Trans. Conn. Acad. Arts Sci., 36, 253
Norton, 1991, The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites, 107
Norton, 1993, Phylogenetic perspectives on genetic systems and reproductive modes of mites, 8
Parker, 2011, Influence of climate, cattle density and lake morphology on Sporormiella abundances in modern lake sediments in the U.S. Great Plains, Holocene, 22, 475, 10.1177/0959683611425550
Perrotti, 2018, Dung fungi as a proxy for megaherbivores: opportunities and limitations for archaeological applications, Veg. Hist. Archaeobotany
Pfingstl, 2017, The marine-associated lifestyle of ameronothroid mites (Acari, Oribatida) and its evolutionary origin: a review, Acarologia, 57, 693, 10.24349/acarologia/20174197
Raczka, 2016, Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics, Biota Neotropica, 16, 10.1590/1676-0611-BN-2015-0090
Raper, 2009, A test of Sporormiella representation as a predictor of megaherbivore presence and abundance, Quat. Res., 17, 490, 10.1016/j.yqres.2009.01.010
Robinson, 2005, Landscape paleoecology and megafaunal extinction in southeastern New York state, Ecol. Monogr., 75, 295, 10.1890/03-4064
Rozas-Davila, 2016, The functional extinction of Andean megafauna, Ecology, 97, 2533, 10.1002/ecy.1531
Rule, 2012, The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia, Science, 335, 1483, 10.1126/science.1214261
Schatz, 2008, Global diversity of oribatids (Oribatida: Acari: Arachnida), Hydrobiology, 595, 323, 10.1007/s10750-007-9027-z
Schelvis, 1992, General introduction, 7
Schelvis, 2005, Late Holocene environmental changes indicated by fossil remains of mites (Arthropoda; Acari) in the marsh of Gravgaz, southwest Turkey, Archaeofauna, 14, 215
Seniczak, 2011, Ecology of Hydrozetes Berlese, 1902 (Acari, Oribatida) at various water bodies near Bydgoszcz (northern Poland), Biol. Lett., 48, 185, 10.2478/v10120-011-0018-4
Seniczak, 2013, Moss mites (Acari, Oribatida) at the edges of bog lakes and pools in Brodnica Lakeland and Orawa-Nowy-Targ Basin (Poland), Biol. Lett., 50, 103, 10.2478/biolet-2013-0010
Seniczak, 2015, Mites (Acari) at the edges of bog pools in Orawa-Nowy-Targ Basin (S Poland), with particular reference to the Oribatida, Biol. Lett., 51, 93, 10.1515/biolet-2015-0009
Seniczak, 2016, Preliminary study of the impact of pig or goat manure fertilization of a meadow on oribatid mites, Biol. Lett., 53, 55, 10.1515/biolet-2017-0004
Seniczak, 2016, Oribatid mite species numbers increase, densities decline and parthenogenetic species suffer during bog degradation, Exp. Appl. Acarol., 68, 409, 10.1007/s10493-016-0015-8
Sillar, 2000, Dung by preference: the choice of fuel as an example of how Andean pottery production is embedded within wider technical, social and economic practices, Archaeometry, 42, 43, 10.1111/j.1475-4754.2000.tb00865.x
1999
Solhøy, 2000, The fossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway, J. Paleolimnol., 23, 35, 10.1023/A:1008068915118
Sterken, 2006, Climate and land-use changes in the Cuzco region (Cordillera Oriental, South East Peru) during the last 1200 years: a diatom based reconstruction, Arch. Hydrobiol., 165, 289, 10.1127/0003-9136/2006/0165-0289
Stuiver, 1993, Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon, 35, 215, 10.1017/S0033822200013904
van Nieuwenhuizen, 1994, The seasonal abundance of oribatid mites (Acari, Cryptostigmata) on an irrigated Kikuyu grass pasture, Exp. Appl. Acarol., 18, 73, 10.1007/BF00055032
Williams, 2011, Vegetation, climate and fire in the eastern Andes (Bolivia) during the last 18,000 years, Palaeogeogr. Palaeoclimatol. Palaeoecol., 312, 115, 10.1016/j.palaeo.2011.10.001
Winterhalder, 1974, Dung as an essential resource in a highland Peruvian community, Hum. Ecol., 2, 89, 10.1007/BF01558115
Wood, 2012, Wetland soil moisture complicates the use of Sporormiella to trace past herbivore populations, J. Quat. Sci., 27, 254, 10.1002/jqs.1539
Wood, 2013, Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events, Quat. Sci. Rev., 77, 1, 10.1016/j.quascirev.2013.06.025
Zocatelli, 2017, Fecal biomarker imprints as indicators of past human land uses: source distinction and preservation potential in archaeological and natural archives, J. Arch. Sci., 81, 79, 10.1016/j.jas.2017.03.010